PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustical Spectroscopy of Carbohydrate Aqueous Solutions: Saccharides; Alkyl Glycosides; Cyclodextrins. Part I. Conformer Variations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acoustical attenuation spectra in the frequency range 12 kHz – 2 GHz and nonequilibrium time domain measurements are briefly reviewed for aqueous solutions of various mono- and disaccharides as well as alkyl glycosides. Several relaxation regimes emerge with relaxation times between 10^-11 s and 10^3 s. In this paper relaxation terms reflecting conformational changes are discussed, particularly mutarotation (10^3 s), chair-chair ring inversion (1 ąs), two modes of pseudorotation (100 ns, 10 ns), disaccharide ring isomerisation (10 ns), and exocyclic side group rotation (1 ns).
Rocznik
Strony
715--738
Opis fizyczny
Bibliogr. 69 poz., wykr.
Twórcy
autor
  • Georg-August-University Goettingen Drittes Physikalisches Institut Friedrich-Hund-Platz 1, 37077 Goettingen, Germany, uka@physik3.gwdg.de
Bibliografia
  • 1. Akashi N., Kushibiriki J.-I., Dunn F. (2000), Measurements of acoustic properties of aqueous dextran solutions in the VHF/UHF range, Ultrasonics 38, 915-919.
  • 2. Angyal S.J. (1984), The composition of reducing sugars, [in:] Advances in carbohydrate chemistry and biochemistry, R.S. Tipson and D. Horton [Eds.], Academic, New York, 42, 15-68.
  • 3. Aoudia M., Zana R. (1998), Aggregation behavior of sugar surfactants in aqueous solutions: effects of temperature and addition of nonionic polymers, J. Colloid Interface Sci., 206, 158-167.
  • 4. Bae J.-R., Lee C.W. (2009), Low-frequency ultrasonic relaxation of β-cyclodextrin and adenosine 5'-monophosphate in aqueous solution, Bull. Korean Chem. Soc., 30, 145-148.
  • 5. Balcerzak A., Płowiec R., Kiełczynski P., Juszkiewicz A. (2002), Absorption of ultrasonic waves in aqueous binary mixtures of α-cyclodextrin and some amphiphilic substances, Mol. Quantum Acoust., 23, 15-25.
  • 6. Balcerzak A. (2008), Ultrasonic measurements of aqueous solutions of β-cyclodextrin with alkyl pyridinium bromides, Arch. Acoust., 34, 345-352.
  • 7. Behrends R., Kaatze U. (2004), Ultrasonic and dielectric study of nonequilibrium monosaccharide solutions in water, Biophys. Chem., 111, 89-94.
  • 8. Bertozzi C.R., Kiessling L.L. (2001), Chemical glycobiology, Science, 291, 2357-2364.
  • 9. Best R.B., Jackson G.E., Naidoo K.J. (2001), Molecular dynamics and NMR study of the α(1 →4) and α(1 → 6) glycosidic linkages: maltose and isomaltose, J. Phys. Chem. B, 105, 4742-4751.
  • 10. Bhattia A.B. (1967), Ultrasonic Absorption, Oxford University Press, Oxford.
  • 11. Dove A. (2001), The bittersweet promise of glycobiology, Nature Biotechnol., 19, 913-917.
  • 12. Eggers F., Kaatze U. (1996), Broad-band ultrasonic measurement techniques for liquids, Meas. Sci. Technol., 7, 1-19.
  • 13. Eggers F., Kaatze U., Richmann K.H., Telgmann T. (1994), New ultrasonic resonator cells for absorption and velocity measurements in liquids below 1 MHz, Meas. Sci. Technol., 5, 1131-1138.
  • 14. Ernst B., Hart G.W., Sinaÿ P. [Eds.], (2000), Carbohydrates in Chemistry and Biology, Vol. 1-4, Wiley, Weinheim.
  • 15. Flood A.E., Johns M.R., White E.T. (1996), Mutarotation of D-fructose in aqueous - ethanolic solutions and its influence on crystallisation, Carbohydr. Res., 288, 45-56.
  • 16. Fukada K., Kawasaki M., Seimiya T., Abe Y., Fujiwara M., Ohbu K. (2000), Stereochemical aspects of micellar properties of esterified glucoside surfactants in water: apparent molar volume, adiabatic compressibility, and aggregation number, Colloid Polym. Sci., 278, 576-580.
  • 17. Fukahori T., Kondo M., Nishikawa S. (2006), Dynamic study of interaction between β-cyclodextrin and aspirin by the ultrasonic relaxation method, J. Phys. Chem. B, 110, 4487-4491.
  • 18. Fukahori T., Nishikawa S., Yamaguchi K. (2004a), Kinetics on isomeric alcohols recognition by α- and β-cyclodextrins using ultrasonic relaxation method, Bull. Chem. Soc. Japan, 77, 2193-2198.
  • 19. Fukahori T., Nishikawa S., Yamaguchi (2004b), Ultrasonic relaxation due to inclusion complex of amino acid by β-cyclodextrin in aqueous solution, J. Acoust. Soc. Am., 115, 2325-2330.
  • 20. Gabius H.-J. (2000), Biological information transfer beyond the genetic code: the sugar code, Naturwissenschaften, 87, 108-121.
  • 21. Gabius H.-J., Siebert H.-C., André S., Jiménez-Barbero J., Rüdiger H. (2004), Chemical biology of the sugar code, ChemBioChem 5, 740-764.
  • 22. Galema S.A. (1992), The effect of stereochemistry on carbohydrate hydration in aqueous solutions, Dissertation, Rijksuniversiteit Groningen.
  • 23. Glasstone S., Laidler K.J., Eyring H. (1941), The theory of rate processes, McGraw-Hill, New York.
  • 24. Hagen R., Kaatze U. (2004), Conformational kinetics of disaccharides in aqueous solutions, J. Chem. Phys., 120, 9656-9664.
  • 25. Hajduk P.J., Horita D.A., Lerner L.E. (1993), Picosecond dynamics of simple monosaccharides as probed by nmr and molecular dynamics simulations, J. Am. Chem. Soc., 115, 9196-9201.
  • 26. Haller J., Kaatze U. (2008a), Kinetics of conformer formation of glucose and maltose in aqueous solutions, Chem. Phys. Lett., 463, 413-417.
  • 27. Haller J., Kaatze U. (2008b), Complexation versus micelle formation: α-cyclodextrin + n-decyltrimethylammonium bromide aqueous solutions, Chem. Phys. Lett., 463, 94-98.
  • 28. Haller J., Kaatze U. (2009a), Monomer exchange and rotational isomerization of alkyl monoglycosides in water, J. Phys. Chem. B, 113, 12283-12292.
  • 29. Haller J., Kaatze U. (2009b), Ultrasonic spectrometry of aqueous solutions of alkyl maltosides: kinetics of micelle formation and head group isomerization, Chem. Phys. Chem., 10, 2703-2710.
  • 30. Haller J., Kaatze U. (2009c), Octylglucopyranoside and cyclodextrin in water: selfaggregation and complex formation, J. Phys. Chem B, 113, 1940-1947.
  • 31. Haller J., Miecznik P., Kaatze U. (2006), Ultrasonic attenuation spectrometry study of α-cyclodextrin + KI complexation in water, Chem. Phys. Lett., 429, 97-102.
  • 32. Hasted J.B. (1973), Aqueous Dielectrics, Chapman and Hall, London.
  • 33. Hazekamp A., Verpoorte R. (2006), Structure elucidation of the tetrahydrocannabinol complex with randomly methylated β-cyclodextrin, Eur. J. Pharmaceut. Sci., 29, 340-347.
  • 34. Hill K., von Rybinski W., Stoll G. (1997), Alkyl polyglycosides: technology, properties and applications, VCH, Weinheim.
  • 35. Hurtley S., Service R., Szuromi P. (2001), Cinderella's coach is ready, Science, 291, 2337.
  • 36. Jutunen J., Jarvinen T., Niemi R. (2005), In-vitro corneal permeation of cannabinoids and their water-soluble phosphate ester, J. Pharm. Pharmacol., 57, 1153-1157.
  • 37. Kaatze, Eggers F., Lautscham K. (2008), Ultrasonic velocity measurements in liquids with high resolution - techniques, selected applications and perspectives, Meas. Sci. Technol., 19, 062001-1-062001-21.
  • 38. Kaatze U., Kühnel V., Menzel K., Schwerdtfeger S. (1993), Ultrasonic spectroscopy of liquids. Extending the frequency range of variable sample length pulse technique, Meas. Sci. Technol., 4, 1257-1265.
  • 39. Kaatze U., Kühnel V., Weiss G. (1996), Variable pathlength cells for precise hypersonic spectrometry of liquids up to 5 GHz, Ultrasonics, 34, 51-58.
  • 40. Kaatze U., Lautscham K., Brai M. (1988), Acoustical absorption spectroscopy of liquids between 0.15 and 3000 MHz: II. Ultrasonic pulse transmission methods, J. Phys. E: Sci. Instrum., 21, 98-103.
  • 41. Kirschner K.N., Woods R.J. (2001), Solvent interactions determine carbohydrate conformation, Proc. Natl. Acad. Sci. USA, 98, 10541-10545.
  • 42. Kogelberg, H., Solis D., Jiménez-Barbero J. (2003), New structural insights into carbohydrate-protein interactions from NMR spectroscopy, Curr. Opin. Struct. Biol., 13, 646-653.
  • 43. Kuttel M.M., Naidoo K.J. (2005), Free energy surfaces for the α(1→4)-glycosidic linkage: implications for polysaccharide solution structure and dynamics, J. Phys. Chem. B, 109, 7468-7474.
  • 44. Lehmann J. (1996), Carbohydrates [in German: Kohlenhydrate], Thieme, Stuttgart.
  • 45. Lindhorst T.K. (2000), Essentials of Carbohydrate Chemistry and Biochemistry, Wiley, Weinheim.
  • 46. López O., Cócera M., Parra J.L., de la Maza A. (2001), Influence of the hydrophobic tail of alkyl glucosides on their ability to solubilize stratum corneum lipid liposomes, Colloid Polym. Sci., 279, 909-915.
  • 47. Maeder T. (2002), Sweet medicines, Sci. Am., 287, 24-31.
  • 48. Nishida Y., Ohrui H., Meguro H. (1984), 1H-NMR studies of (6R)- and (6S)-deuterated D-hexoses: assignment of the preferred rotamers about C5-C6 bond of D-glucose and D-galactose derivatives in solutions, Tetrahedron Lett., 25, 1575-1578.
  • 49. Nishikawa S., Kondo M. (2006), Kinetic study for the inclusion complex of carboxylic acids with cyclodextrin by the ultrasonic relaxation method, J. Phys. Chem. B, 110, 26143-26147.
  • 50. Ott K.-H., Meyer B. (1996), Molecular dynamics simulations of maltose in water, Carbohydr. Res., 281, 11-34.
  • 51. Panneer Selvam A., Geetha D. (2008), Ultrasonic studies on Lamivudine: β-cyclodextrin and polymer inclusion complexes, Pak. J. Biol. Sci., 11, 656-659.
  • 52. Piercy J.E. (1961), Ultrasonic relaxation and axial-equatorial isomerization in methyl cyclohexane, J. Acoust. Soc. Am., 33, 198-206.
  • 53. Pillion D.J., Ahsan F., Arnold J.J., Balusubramanian B.M., Piraner O. (2002), Synthetic long-chain alkyl maltosides and alkyl sucrose esters as enhancers of nasal insulin absorption, J. Pharm. Sci., 91, 1456-1462.
  • 54. Polacek R., Behrends R., Kaatze U. (2001), Chair-chair conformational flexibility of monosaccharides linked to the anomer equilibrium, J. Phys. Chem. B, 105, 2894-2896.
  • 55. Polacek R., Kaatze U. (2001a), A small volume spherical resonator method for the acoustical spectrometry of liquids down to audio frequencies, Meas. Sci. Technol., 12, 1-6.
  • 56. Polacek R., Kaatze U. (2001b), Chair-chair ring inversion in D-fructose coupled to the mutarotation in aqueous-ethanolic solutions, Chem. Phys. Lett., 345, 93-99.
  • 57. Polacek R., Kaatze U. (2003), A high-Q easy-to-handle biconcave resonator for acoustic spectrometry of liquids, Meas. Sci. Technol., 14, 1068-1074.
  • 58. Polacek R., Stenger J., Kaatze U. (2002), Chair-chair conformational flexibility, pseudorotation, and exocyclic group isomerization of monosaccharides in water, J. Chem. Phys., 116, 2973-2982.
  • 59. Reinsborough V.C., Stephenson V.C. (2004), Inclusion complexation involving sugarcontaining species: β-cyclodextrin and sugar surfactants, Can. J. Chem.-Rev. Can. Chimie, 82, 45-49.
  • 60. von Rybinski W., Hill K. (1998), Alkyl polyglycosides - properties and applications of a new class of surfactants, Angew. Chem. Int. Ed. Engl., 37, 1328-1345.
  • 61. Schnupf U., Willett J.L., Bosma W.B., Momany F.A. (2007), DTF studies of the disaccharide ®-maltose: relaxed isopotential maps, Carbohydrate Res., 342, 2270-2285.
  • 62. Sears P., Wong C.-H. (1999), Carbohydrate mimetics: a new strategy for tackling the problem of carbohydrate-mediated biological recognition, Angew. Chem. Int. Ed. Engl., 38, 2300-2324.
  • 63. Sears P., Wong C.-H. (2001), Toward automated synthesis of oligosaccharides and glycoproteins, Science, 291, 2344-2350.
  • 64. Shirota K., Kato Y., Suzuki., Sugiyama Y. (2001), Characterization of novel kidneyspecific delivery system using alkylgucoside vector, J. Pharmacol. Exp. Ther., 299, 459-467.
  • 65. Snyder J.R., Serianni A.S. (1986), D-idose: a one- and two-dimensional NMR investigation of solution composition and conformation, J. Org. Chem., 51, 2694-2702.
  • 66. Stenger J., Cowman M., Eggers F., Eyring E.M., Kaatze U., Petrucci S. (2000), Molecular dynamics and kinetics of monosaccharides in solution. A broadband ultrasonic relaxation study, J. Phys. Chem. B, 104, 4782-4790.
  • 67. Tvaroˆska I., Bleha T. (1989), Anomeric and exo-anomeric effects in carbohydrate chemistry, Adv. Carbohydrate Chem. Biochem., 47, 45-123.
  • 68. Valente A.J.M., Nilsson M., Söderman O. (2005), Interactions between n-octyl and nnonyl β-D-glucosides and α- and β-cyclodextrins as seen by self-diffusion NMR, J. Colloid Interface Sci., 281, 218-224.
  • 69. Yamaguchi K., Fukahori T., Nishikawa S. (2005), Dynamic interaction between alkylammonium ions and β-cyclodextrin by means of ultrasonic relaxation, J. Phys. Chem. A, 109, 40-43.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0088
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.