PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Active Noise Control Algorithm Based on a Neural Network and Nonlinear Input-Output System Identification Model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of digital signal processors and the increase in their computing capabilities bring opportunities to employ algorithms with multiple variable parameters in active noise control systems. Of particular interest are the algorithms based on artificial neural networks. This paper presents an active noise control algorithm based on a neural network and a nonlinear input-output system identification model. The purpose of the algorithm is an active noise control system with a nonlinear primary path. The algorithm uses the NARMAX system identification model. The neural network employed in the proposed algorithm is a multilayer perceptron. The error backpropagation rule with adaptive learning rate is employed to update the weight of the neural network. The performance of the proposed algorithm has been tested by numerical simulations. Results for narrow-band input signals and nonlinear primary path are presented below.
Rocznik
Strony
191--202
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • Central Institute for Labour Protection – National Research Institute Czerniakowska 16, 00-701 Warszawa, Poland, tokru@ciop.pl
Bibliografia
  • 1. Bouchard M., Paillard B., Dinh C. (1999), Improved training of neural networks for the nonlinear active control of sound and vibration, IEEE Trans. on Neural Networks, 10, 2, 391-401.
  • 2. Chen S., Billings S. (1989), Representation of nonlinear systems: The NARMAX model, International Journal of Control, 49, 3, 1013-1032.
  • 3. Cybenko G.V. (1989), Approximation by Superpositions of a Sigmoidal Function, Mathematics of Control, Signals and Systems, 2, 4, 303-314.
  • 4. Duch W., Korbicz J., Rutkowski L., Tadeusiewicz R. (2000), [in Polish: Sieci neuronowe], Exit, Warszawa.
  • 5. Elliott S. (2001), Signal Processing for Active Control, Academic Press, London.
  • 6. Engel Z., Nizioł J. (1995), [in Polish: Perspektywy rozwoju aktywnych metod redukcji hałasu i wibracji], Materiały II Szkoły Metody Aktywne Redukcji Drgań i Hałasu, pp. 11-24.
  • 7. Hansen C.J., Snyder S.D. (1997), Active Control of Noise and Vibration, E&FN Spoon.
  • 8. Haykin S. (1994), Neural Networks, a Comprehensive Foundation, Macmillan, New York.
  • 9. Morzyski L., Makarewicz G. (2003), Application of neural networks in active noise reduction systems, International Journal of Occupational Safety and Ergonomics, 9, 3, 257-270.
  • 10. Narendra K., Parthasarathy K. (1990), Identification and control of dynamical systems using neural networks, IEEE Trans. on Neural Networks, 1, 1, 4-27.
  • 11. Nelles O. (2000), Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, Springer.
  • 12. Osowski S. (2000), [in Polish: Sieci neuronowe do przetwarzania informacji], Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • 13. Snyder S., Tanaka N. (1995), Active control of vibration using a neural network, IEEE Trans. on Neural Networks, 6, 1, 819-828.
  • 14. Strauch P., Mulgrew B. (1999), Active control of nonlinear noise processes in a linear duct, IEEE Trans. on Signal Processing, 46, 2404-2412.
  • 15. Zhou Y. et al. (2005), Analysis and DSP implementation of an ANC system using a filtered error neural network, Journal of Sound and Vibration, 285, 1-25
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.