PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Narrow Beam Ultrasonic Transducer Matrix Model for Projection Imaging of Biological Media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following paper presents an idea of minimising the number of connections of individual piezoelectric transducers in a row-column multielement passive matrix system used for imaging of biological media structure by means of ultrasonic projection. It allows to achieve significant directivity with acceptable input impedance decrease. This concept was verified by designing a model of a passive ultrasonic matrix consisting of 16 elementary piezoceramic transducers, with electrode attachments optimised by means of electronic switches in rows and columns. Distributions of acoustic field generated by the constructed matrix model in water and results of the calculations conformed well.
Rocznik
Strony
91--109
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
autor
  • Wrocław University of Technology Institute of Telecommunications, Teleinformatics and Acoustics Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • 1. Chiao R.Y., Thomas L.J. (1996), Aperture formation on reduced-channel arrays using the transmit-receive apodization matrix, 1996 IEEE Ultrasonics Symposium Proceedings, 1567-1571.
  • 2. Drinkwater B.W., Wilcox P.D. (2006), Ultrasonic arrays for non-destructive evaluation: A review, NDT&E International, 39, 525-541.
  • 3. Eames M.D.C., Hossack J.A. (2008), Fabrication and evaluation of fully-sampled, twodimensional transducer array for "Sonic Window" imaging system, Ultrasonics, 48, 376-383.
  • 4. Ermert H., Keitmann O., Oppelt R., Granz B., Pesavento A., Vester M., Tillig B., Sander V. (2000), A New Concept for a Real-Time Ultrasound Transmission Camera, 2000 IEEE Ultrasonics Symposium Proceedings, 1611-1614.
  • 5. Granz B., Oppelt R. (1987), A Two-Dimensional PVDF Transducer Matrix as a Receiver in an Ultrasonic Transmission Camera, Acoustical Imaging, 15, Plenum Press, New York, 213-225.
  • 6. Green P.S., Schaefer L.F., Jones E.D., Suarez J.R. (1974), A New High Performance Ultrasonic Camera, Acoustical Holography, 5, Plenum Press, New York, 493-503.
  • 7. Hoctor R.T., Kassam S.A. (1990), The Unifying Role of the Coarray in Aperture Synthesis for Coherent and Incoherent Imaging, Proceedings of the IEEE, 78, 4, 735-752.
  • 8. Johnson J.A., Karaman M., Khuri-Yakub B.T. (2005), Coherent-Array Imaging Using Phased Subarrays. Part I: Basic Principles, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 1, 37-50.
  • 9. Karaman M., Wygant I.O., Oralkan Ö., Khuri-Yakub B.T. (2009), Minimally Redundant 2-D Array Design for 3-D Medical Ultrasound Imaging, IEEE Transactions on Medical Imaging, 28, 7, 1051-1061.
  • 10. Kim J-J., Song T-K. (2006), Real-Time High-Resolution 3D Imaging Method Using 2D Phased Arrays Based on Sparse Synthetic Focusing Technique, 2006 IEEE Ultrasonics Symposium Proceedings, 1995-1998.
  • 11. Lockwood G.R., Foster F.S. (1996), Optimizing the Radiation Pattern of Sparse Periodic Two-Dimensional Arrays, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 43, 1, 15-19.
  • 12. Nowicki A. (1995), Basis of Doppler Ultrasonography [in Polish], PWN, Warszawa.
  • 13. Nowicki A., Wójcik J., Kujawska T. (2009), Nonlinearly Coded Signals for Harmonic Imaging, Archives of Acoustics, 34, 1, 63-74.
  • 14. Opieliński K.J., Gudra T. (2005), Computer recognition of biological objects' internal structure using ultrasonic projection, Computer Recognition Systems (Advances in Soft Computing), Berlin, Springer, 645-652.
  • 15. Opieliński K.J., Gudra T. (2006), Determining the acoustic field distribution of ultrasonic multi-element probes, Archives of Acoustics, 31, 4, 391-396.
  • 16. Opieliński K.J., Gudra T. (2009), Multielement ultrasonic probes for projection imaging, Proceedings of the International Congress on Ultrasonics, Santiago de Chile, January 11-17 2009, Physics Procedia (in print).
  • 17. Opieliński K.J., Gudra T., Pruchnicki P. (2009), The method of a medium internal structure imaging and the device for a medium internal structure imaging [in Polish], Patent Application No. P389014 to the Patent Office of the Republic of Poland, Wrocław University of Technology.
  • 18. Opieliński K.J., Gudra T., Pruchnicki P. (2010), A Digitally Controlled Model of an Active Ultrasonic Transducer Matrix for Projection Imaging of Biological Media, Archives of Acoustics, 35, 1, 75-90.
  • 19. Parmar N., Kolios M.C. (2006), An investigation of the use of transmission ultrasound to measure acoustic attenuation changes in thermal therapy, Med. Bio. Eng. Comput., 44, 583-591.
  • 20. Ramm von, O.T., Smith S.W. (1983), Beam steering with linear arrays, IEEE Trans. Biomed. Eng., BME-30, 8, 438-452.
  • 21. Somer J.C. (1969), Electronic sector scanning with ultrasonic beams, Proceedings of the 1st World Congress on Ultrasound Diagnostics in Medicine, Vienna, 27.
  • 22. Trots I., Nowicki A., Lewandowski M., Secomski W., Litniewski J. (2008), Double pulse transmission - signal-to-noise ratio improvement in ultrasound imaging, Archives of Acoustics, 33, 4, 593-601.
  • 23. Trots I., Nowicki A., Lewandowski M. (2009), Synthetic Transmit Aperture in Ultrasound Imaging, Archives of Acoustics, 34, 4, 685-695.
  • 24. Thomenius K.E. (1996), Evolution of ultrasound beamformers, 1996 IEEE Ultrasonics Symposium Proceedings, 1615-1622.
  • 25. Wildes D.G., Chiao R.Y., Daft Ch.M.W., Rigby K.W., Smith L.S., Thomenius K.E. (1997), Elevation performance of 1.25D and 1.5D Transducer Arrays, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44, 5, 1027-1037.
  • 26. Wygant I.O., Karaman M., Oralkan Ö., Khuri-Yakub B.T. (2006), Beamforming and hardware design for a multichannel front-end integrated circuit for real-time 3D catheter-based ultrasonic imaging, SPIE Medical Imaging, 6147, 61470A-1-8.
  • 27. Wygant I.O., Lee H., Nikoozadeh A., Yeh D.T., Oralkan Ö., Karaman M., Khuri-Yakub B.T. (2006), An Integrated Circuit with Transmit Beamforming and Parallel Receive Channels for Real-Time Three-Dimensional Ultrasound Imaging, 2006 IEEE Ultrasonics Symposium Proceedings, 2186-2189.
  • 28. Yen J.T., Smith S.W. (2004), Real-Time Rectilinear 3-D Ultrasound Using Receive Mode Multiplexing, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, 2, 216-226.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.