PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Digitally Controlled Model of an Active Ultrasonic Transducer Matrix for Projection Imaging of Biological Media

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following work presents the idea of constructing a digitally controlled active piezoceramic transducer matrix for ultrasonic projection imaging of biological media in a similar way as in case of roentgenography (RTG). Multielement ultrasonic probes in the form of flat matrices of elementary piezoceramic transducers require attaching a large number of electrodes in order to activate the individual transducers. This paper presents the idea of minimising the number of transducer connections in an active row-column matrix system. This idea was verified by designing a model of a matrix consisting of 16 ultrasonic transducers with electrode attachments optimised by means of electronic switches in rows and columns and miniature transistor switches in the nodes of the matrix allowing to activate selected transducers. The results of measurements and simulations of parameters of the designed matrix show that it is suitable to be used in projection imaging of biological media as a sending probe. In to use the matrix as a universal sending or receiving probe, it was suggested to add further switches that would eliminate the undesired effect of crosstalks in case of switches used for toggling the transducers in the nodes of the matrix.
Rocznik
Strony
75--90
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
  • Wrocław University of Technology Institute of Telecommunications, Teleinformatics and Acoustics Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland, krzysztof.opielinski@pwr.wroc.pl
Bibliografia
  • 1. Brettel H., Roeder U., Scherg C. (1981), Ultrasonic transmission camera for medical diagnosis, Biomedizinische Technik, 26, 63.
  • 2. Dynowski K., Litniewski J., Nowicki A. (2008), Scanning Acoustic Microscope for 3D imaging, Archives of Acoustics, 33, 3, 293-302.
  • 3. Ermert H., Keitmann O., Oppelt R., Granz B., Pesavento A., Vester M., Tillig B., Sander V. (2000), A New Concept For A Real-Time Ultrasound Transmission Camera, IEEE Ultrasonics Symposium Proceedings, San Juan, Puerto Rico.
  • 4. Granz B., Oppelt R. (1987), A Two Dimensional PVDF Transducer Matrix as a Receiver in an Ultrasonic Transmission Camera, Acoustical Imaging, 15, Plenum Press, New York, 213-225.
  • 5. Green P.S., Schaefer L.F., Jones E.D., Suarez J.R. (1974), A New High Performance Ultrasonic Camera, Acoustical Holography, 5, Plenum Press, New York, 493-503.
  • 6. Gudra T., Opieliński K. (2006), The multi-element probes for ultrasound transmission tomography, Journal de Physique IV, 137, 79-86.
  • 7. Olson H.F. (1957), Acoustical Engineering, Canada, D. Van Nostrand Company, 30-55.
  • 8. Opieliński K.J., Gudra T. (2004), Biological Structure Imaging by Means of Ultrasonic Projection, Structures - Waves - Human Health 13(2), Polish Acoustical Society Division Kraków, Kraków, Poland, 97-106.
  • 9. Opieliński K.J., Gudra T. (2005), Computer recognition of biological objects' internal structure using ultrasonic projection, Computer recognition systems (Advances in Soft Computing), Berlin, Springer, 645-652.
  • 10. Opieliński K.J., Gudra T. (2006), Determining the acoustic field distribution of ultrasonic multi-element probes, Archives of Acoustics, 31, 4, 391-396.
  • 11. Opieliński K.J., Gudra T. (2009), Multielement ultrasonic probes for projection imaging [in:] Proceedings of the International Congress on Ultrasonics, Santiago de Chile, January 11-17 2009, Physics Procedia (in print).
  • 12. Opieliński K.J., Gudra T., Pruchnicki P. (2009), The method of a medium internal structure imaging and the device for a medium internal structure imaging [in Polish], patent application no. P389014 to the Patent Office of the Republic of Poland,Wrocław University of Technology.
  • 13. Piotrzkowska H., Litniewski J., Lewandowski M., Szymańska E., Nowicki A. (2009), Use of Quantitative Ultrasound to Measure Acoustic Properties of Human Skin, Archives of Acoustics, 34, 4, 471-480.
  • 14. Trots I., Nowicki A., Lewandowski M. (2008), Laboratory setup for synthetic aperture ultrasound imaging, Archives of Acoustics, 33, 4, 573-580.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.