PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ultrasonic Characterization of Bi2(Te_1-x Se_x)_3 System

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Longitudinal and shear ultrasonic wave velocities were measured in the ternary compounds Bi2(Te_1-x Se_x)_3 (0 ≤x ≤1), using pulse echo technique. Measurements were carried out at 4 MHz frequency and at room temperature. Elastic moduli and acoustic impedance have been calculated. The results indicate that these parameters are influenced by the increased addition of selenium from x = 0 to 1.
Rocznik
Strony
715--725
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
Bibliografia
  • [1] Maissel I., Glang R. [Eds.], Handbook of Thin Film Technology, McGraw Hill, New York 1970.
  • [2] Mathews J.W. [Ed.], Epitaxial Growth, Academic Press, New York 1975.
  • [3] Anderson J.C. [Ed.], The Use of Thin Films in Physical Investigations, Academic Press, New York 1966.
  • [4] Chopra K.L., Thin Film Phenomena, McGraw Hill, New York 1969.
  • [5] Kruger G., Applications of thin films in commercial electronics, Thin Solid Films, 12, 335 (1972).
  • [6] Rowe D.M., CRC Handbook of Thermo-electrics (Boca Raton, FL: CRC Press), 1995, p. 617.
  • [7] Ioff A.F., Semiconductor Thermoelements and Thermoelectric Cooling, (London: Infosearch), 1957, p. 155.
  • [8] Vandersande J.W., Fleurial J.P., Proc. 15th Int. Conf. on Thermoelectricity (Pasadena, C A, March), ed. Caillat (1996), p. 252.
  • [9] Shafai C., Brett M.J., Optimization of Bi2Te3 thin films for microintegrated Peltier heat pumps, J. Vac. Sci. Technol. A, 15, 2798 (1997).
  • [10] Min G., Rowe D.M., Cooling performance of integrated thermoelectric microcooler, Solid State Electronics, 43, 923 (1999).
  • [11] Yim W.M., Rosi F.D., Compound tellurides and their alloys for peltier cooling-A review, Solid State Electronic 15, 1121 (1972).
  • [12] Caillat T., Carle M., Pierrat P., Scherrer H., Scherrer S., Thermoelectric properties of (BixSb1¡x)2Te3 single crystal solid solutions grown by the T.H.M. method, J. Phys. Chem. Solids, 53, 1121 (1992).
  • [13] Goltsman B.M., Kultasov V.A., Luk'yanova L.N., Soviet Phys. Solid State, 14, 868 (1972).
  • [14] Barash A.S., Zhukova T.B., Parparov E.Z., Izv. Akad. Nauk SSSR, Neorg. Mater., 12, 9, 1552 (1976).
  • [15] Kaibe H., Tanaka Y., Sakata M., Nishida I., Anisotropic galvanomagnetic and thermoelectric properties of n-type Bi2Te3 single crystal with the composition of a useful thermoelectric cooling material, J. Phys. Chem. Solids, 50, 945 (1989).
  • [16] Lopez-Otero A., The dependence of the grain size of continuous epitaxial films on the growth conditions, J. Cryst. Growth, 42, 157 (1977).
  • [17] Gaafar M.S., El-Sayad E.A., Marzouk S.Y., Ultrasonic study of CuxAg1¡xInTe2 bulk material, Archives of Acoustics, 33, 3, 363-372 (2008).
  • [18] Krieger M., Sigg H., Reinhart F.K., Elastic constant C11 of AlxGa1¡xAs determined by near infrared Brillouin scattering, Solid State Communications, 88, 267 (1993).
  • [19] Tsuchiya Y., Hisakabe M., Structural changes in molten (GaxIn1¡x)As: Sound velocity measurements, J. Non-Cryst. Solids, 353, 3000 (2007).
  • [20] Soliman L.I., Farag I.S., Nassary M.M., Shaban H.T., Aly S.S., Preparation and Characterization of Thermally Evaporated Bi2(Te1¡xSex)3Thin Films, Fizika A, sent for publication.
  • [21] Varshneya A.K., Fundamentals of Inorganic Glasses, Acad. Press, New York 1994.
  • [22] Khalifa F.A., El-Hadi Z.A., Moustaffa F.A., Hassan N.A., Density and molar volume of some sodium silicate, lead borate and lead silicate glasses, Indian J. Pure Appl. Phys., 27, 279 (1989).
  • [23] Lid D.R., CRC Handbook of Chemistry and Physics, 80th edition, CRC Press, London 2000.
  • [24] Makishima A., Mackenzie J.D., Direct calculation of Young's modulus of glass, J. Non-Cryst. Solids, 12, 35 (1973).
  • [25] Makishima A., Mackenzie J.D., Calculation of bulk modulus, shear modulus and Poisson's ratio of glass, J. Non-Cryst. Solids, 17, 147 (1975).
  • [26] Moustafa A.M., El-Sayad E.A., Sakr G.B., Crystal structure refinement of CuxAg1¡xInTe2 bulk material determined from X-ray powder diffraction data using the Rietveld method, Cryst. Res. Technol., 39, 266 (2004).
  • [27] Grzeta-Plenkovic B., Santic, Crystal data for CuGaxIn1¡xTe2, J. Appl. Crystallogr., 16, 576 (1983).
  • [28] Knight K.S., The crystal structures of CuInSe2 and CuInTe2, Mater. Res. Bull., 27, 161 (1992).
  • [29] Woolley J.C., Williams E.W., Some cross-substitutional alloys of CdTe, J. Electrochem. Soc., 113, 899 (1966).
  • [30] Rajendran V., Palanivelu N., Chaudhuri B.K., Goswami K., Characterisation of semiconducting V2O5-Bi2O3-TeO2 glasses through ultrasonic measurements, J. Non-Cryst. Solids, 320, 195 (2003).
  • [31] Bridge B., Higazy A., A model of the compositional dependence of the elastic moduli of polycomponent oxide glasses, Phys. Chem. Glasses, 27, 1 (1986).
  • [32] Bridge B., Patel N.D., Waters D.N., On the elastic constants and structure of the pure inorganic glasses, Phys. Stat. Sol. (a), 77, 655 (1983).
  • [33] Anderson O.L., Physical Acoustics, Warren P. Mason ed., Academic Press, New York, (III) B, 45 (1965).
  • [34] Wankhede D.S., Wankhede N.N., Lande M.K., Arbad B.R., Densities and ultrasonic velocities of some oxygen containing compounds, Journal of Molecular Liquids, 138, 124 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.