PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical characteristics of the damped vibrations of a string excited by stochastic forces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Our theoretical study aims at finding some statistic parameters characterizing the damped vibrations of a string excited by stochastic impulses. We derive the dependence of these parameters on the parameters of the string as well as on the stochastic distributions of the impulse magnitude, and on the place of the action. We also carry out a numerical simulation verifying the derived mathematical model and interpret the differences between the results obtained in simulation and the mathematical calculations. This study is the fourth stage of a research aimed at designing a probe that facilitates the process of measuring of the parameters, determining the quality of a technological process.
Rocznik
Strony
601--612
Opis fizyczny
Bibliogr. 11 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Iwankiewicz R., Dynamic systems under random impulses driven by a generalized Erlang renewal process, [in:] Proceedings of the 10th IFIP, WIG 7.5 Working Conference on Reliability and Optimization of Structural Systems, 25-27 March 2002, pp. 103-110, Kansai University, Osaka, Japan. Eds., 2003.
  • [2] Iwankiewicz R., Dynamic response of non-linear systems to random trains of nonoverlapping pulses, Meccanica, 37, 1, 1-12 (2002).
  • [3] Jabłonski M., Ozga A., On statistical parameters characterizing vibrations of oscillators without damping and forced by stochastic impulses, Mechanics, 25, 4, 156-163 (2006).
  • [4] Jabłonski M., Ozga A., Parameters characterizing vibrations of oscillators with damping forced by stochastic impulses, Archives of Acoustics, 31, 3, 373 (2006).
  • [5] Jabłonski M., Ozga A., Statistical characteristics of vibrations of a string forced by stochastic forces, Mechanics, AGH University of Science and Technology, 27, 1, 1-7 (2008).
  • [6] Rice S. O., Mathematical analysis of random noise I, Bell. System Technical Journal, 23, 282-332 (1944).
  • [7] Roberts J. B., Distribution of the Response of Linear Systems to Piosson Distributed Random Pulses, Journal of Sound and Vibration, 28, 1, 93-103 (1973).
  • [8] Roberts J. B., Spanos P. D., Stochastic Averaging: an Approximate Method for Solving Random Vibration Problems, International Journal of Non-Linear Mechanics, 21, 2, 111-134 (1986).
  • [9] Rowland E. N., The theory of mean square variation of a function formed by adding; known functions with random phases and applications to the theories of shot effect and of light, Mathematical Proceedings of the Cambridge Philosophical Society, 32, 04, p. 580 (1936).
  • [10] Takác L., On secondary processes generated by a Poisson process and their applications in physics, Acta Mathematica Hungarica, 5, 3-4, 203-236 (1954).
  • [11] Tylikowski A., Stochastic stability of continuous systems [in Polish:] Stochastyczna stateczność układów ciągłych, PWN, Warszawa, 1991, p. 230.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.