PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Feedforward vs. Feedback Fixed-Parameter H2 Control of Non-Stationary Noise

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stationary random noise can be modelled as a wide-sense stationary white noise filtered by a minimum phase filter. Such filter can be used to design an optimal control filter minimising variance of the signal being the effect of the noise and the secondary sound interference. However, in many environments the noise is subject to change. For instance, some of the noisy devices are switched on and off, speed of some rotors or fans changes, etc. As a result contribution of different frequency components may significantly vary in time. Solving the optimisation problem to update control filter is rather avoided in on-line systems. In adaptive approach there are problems with convergence or some unpleasant transient acoustic effects. In this paper, the fixed-parameter approach to control is appreciated. Dominating frequency components/bands can usually be distinguished for the acoustic environment. Then, the idea of generalised disturbance defined by a frequency window of different type can be applied. If a reference signal, correlated with the disturbance to be reduced is available in advance, a feedforward structure can be applied, and otherwise, a feedback structure is used. Spectral and inner-outer factorisations are employed in order to cope with non-minimum phase character of the acousto-electric plant. Efficiency of the proposed approach for both control structures is verified based on the data obtained from an active personal headset. The generalised disturbance based control systems are confronted with the classical Wiener control systems designed for the given disturbance.
Rocznik
Strony
521--535
Opis fizyczny
Bibliogr. 15 poz., wykr.
Twórcy
autor
  • Silesian University of Technology Institute of Automatic Control Akademicka 16, 44-100 Gliwice, Poland, mariusz.latos@polsl.pl
Bibliografia
  • [1] Bockstael A., De Greve B., Verifying the attenuation of earplugs in situ: Method validation using artificial head and numerical simulations, Journal of the Acoustical Society of America, 124, 2, 973-981 (2008).
  • [2] Elliott S.J., Signal Processing for Active Control, Academic Press, London 2001.
  • [3] Engel Z., Active Reduction of Vibration and Noise [in Polish:] Aktywna redukcja drgan I hałasu, In. Proc. XI Conference on Vibration in Physical Systems, pp. 124-125, Poznan, Poland, 1984.
  • [4] Engel Z., Kowal J., Control of Vibroacoustic Processes [in Polish:] Sterowanie Procesami Wibroakustycznymi, University of Mining and Metalurgy Press, Kraków 1995.
  • [5] Engel Z., Makarewicz G., Zawieska W.M., Morzynski L., Active Noise and Vibration Reduction Methods [in Polish:] Metody Aktywne Redukcji Hałasu, CIOP Press, Warszawa 2001.
  • [6] Horowitz I.M., Synthesis of Feedback Systems, Academic Press, London 1963.
  • [7] Latos M., Pawelczyk M., Fixed-parameter control of non-stationary acoustic noise, Proceedings of the 16th International Congress on Sound and Vibration - ICSV16, Kraków 2009.
  • [8] Latos M., Pawelczyk M., Feedforward fixed-parameter control of non-stationary noise, Proceedings of the 56th Open Seminar on Acoustics - OSA56, Goniadz, Poland, 2009.
  • [9] Morari M., Zafiriou E., Robust Process Control, Prentice-Hall, New Jersey 1989.
  • [10] Pawelczyk M., Feedback Control of Acoustic Noise at Desired Locations, Silesian University of Technology, Gliwice 2005.
  • [11] Pawelczyk M., Analog Active Control of Acoustic Noise at a Virtual Location, IEEE Transactions on Control Systems Technology, 17, 2, 465-472 (2009).
  • [12] Simon A., Flowers G.T., Adaptive Disturbance Rejection and Stabilisation for Rotor Systems with Internal Damping, International Journal of Acoustics and Vibration, 13, 2, 73-81 (2008).
  • [13] Tammi K., Identification and Active Feedback-Feedforward Control of Rotor, International Journal of Acoustics and Vibration, 12, 1, 7-14 (2007).
  • [14] Vidyasagar M., Control Systems Synthesis. A Factorization Approach, MIT Press, Cambridge, MA, 1985.
  • [15] Williams W., Hearing protector testing and individual variability, Acoustics Australia, 36, 2, 60-62 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.