PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Hilbert Transform-Based Methodology to Computer Modelling of Reverberant Sound Decay in Irregularly Shaped Rooms

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study into the application of the Hilbert transform in numerical simulations of reverberant sound decay in irregularly shaped enclosures is presented. It is shown that there are some limitations in the use of this integral transform to exponentially decaying harmonic signals because the integration result consists not only of a signal, which differs from the original one by a phase shift of Ľ=2, but also of a decaying nonoscillating signal occurring due to the fact that a spectrum of exponential function is unbounded. An initial amplitude of this signal is directly proportional to the ratio between a damping coefficient and a mode frequency, thus for lightly damped rooms, where this ratio is much smaller than unity, it can be neglected. Results of numerical simulation carried out for L-shaped enclosure indicate that the Hilbert transform is a useful tool in calculating instantaneous properties of reverberant sound, especially an envelope of the sound pressure level. It is of special importance in the case of irregularly shaped rooms, where a deviation from the exponential sound decay often occurs because of differences between reverberant responses for particular modes.
Rocznik
Strony
491--505
Opis fizyczny
Bibliogr. 20 poz., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B, 02-106 Warszawa, Poland l, mmeissn@ippt.gov.pl
Bibliografia
  • [1] Yan Y., Ahmad K., Kunduk M., Bless D., Analysis of vocal-fold vibrations from high-speed laryngeal images using a Hilbert transform-based methodology, J. Voice, 19, 2, 161-175 (2005).
  • [2] Huageng L., Xingjie F., Bugra E., Hilbert transform and its engineering applications, AIAA Journal, 47, 4, 923-932 (2009).
  • [3] Simon M., Tomlinson G.R., Use of the Hilbert transform in modal analysis of linear and non-linear structures, J. Sound Vib., 96, 4, 421-436 (1984).
  • [4] Feldman M., Seibold S., Damage diagnosis of rotors: application of Hilbert transform and multihypothesis testing, J. Vib. Control, 5, 3, 421-442 (1999).
  • [5] Yu D., Cheng J., Yang Y., Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings, Mech. Sys. Sig. Process., 19, 2, 259-270 (2005).
  • [6] Feldman M., Time-varying vibration decomposition and analysis based on the Hilbert transform, J. Sound Vib., 295, 3-5, 518-530 (2006).
  • [7] Feldman M., Theoretical analysis and comparison of the Hilbert transform decomposition methods, Mech. Sys. Sig. Process., 22, 3, 509-519 (2008).
  • [8] Karjalainen M., Antsalo P., Mäkivirta A., Peltonen T., Välimäki V., Estimation of modal decay parameters from noisy response measurements, J. Audio Eng. Soc., 50, 11, 867-878 (2002).
  • [9] Meissner M., Influence of wall absorption on low-frequency dependence of reverberation time in room of irregular shape, Appl. Acoust., 69, 7, 583-590 (2008).
  • [10] Meissner M., Analysis of non-exponential sound decay in an enclosure composed of two connected rectangular subrooms, Arch. Acoust., 32, 4S, 213-220 (2007).
  • [11] Meissner M., Influence of absorbing material distribution on double slope sound decay in L-shaped room, Arch. Acoust., 33, 4S, 159-164 (2008).
  • [12] Hahn S.L., The Hilbert transforms in signal processing, Artech House, Inc., Boston 1996.
  • [13] Schroeder M., The "Schroeder frequency" revisited, J. Acoust. Soc. Amer., 99, 5, 3240-3241 (1996).
  • [14] Meissner M., Computational studies of steady-state sound field and reverberant sound decay in a system of two coupled rooms, Cent. Eur. J. Phys., 5, 3, 293-312 (2007).
  • [15] Bracewell R.N., The Fourier transform and its applications, McGraw-Hill, London 1999.
  • [16] Kuttruff H., Room acoustics, Applied Science Publishers Ltd, London 1973.
  • [17] Dowell E.H., Gorman G.F., Smith D.A., Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparison to experiment, J. Sound Vib., 52, 4, 519-542 (1977).
  • [18] Nakayama T., Yakubo K., The forced oscillator method: eigenvalue analysis and computing linear response functions, Phys. Rep., 349, 3, 239-299 (2001).
  • [19] Kinsler L.E., Frey A.R., Fundamentals of acoustics, John Wiley & Sons, New York 1962.
  • [20] Anderson J.S., Bratos-Anderson M., Acoustic coupling effects in St Paul's Cathedral, London, J. Sound Vib., 236, 2, 209-225 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.