PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Fields Induced by Low Power Focused Ultrasound in Soft Tissues During Gene Therapy. Numerical Predictions and Experimental Results

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work is twofold. Firstly, to verify a theoretical model which is capable of predicting temperature fields appearing in soft tissues during their ultrasound treatment. Secondly, to analyze some aspects of the dynamics of Heat Shock Response induced by the heating process in the context of therapeutic treatment. The theoretical investigations and quantitive analysis of temperature increments at any field point versus time of heating process, depending on the heat source power, spatial distribution and duration as well as on the tissue thermal properties, has been carried out by Finite Element Method (FEM). The validation of the numerical model has been performed by comparison of the calculation results with the experimental data obtained by measuring in vitro of the 3D temperature increments induced in samples of the turkey and veal liver by the circular focused transducer with the diameter of 15 mm, focal length of 25 mm and resonance frequency of 2 MHz. Various ultrasonic regimes were considered. They were controlled by adjusting ultrasound power and exposure time. The heat shock proteins (HSP) and misfolded proteins (MFP) levels during the proposed cyclic sonification are presented.
Rocznik
Strony
445--459
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawinskiego 5B, 02-106 Warszawa, Poland, bgambin@ippt.gov.pl
Bibliografia
  • [1] Arthur R.M., Straube W.L., Trobauch J.W., Moros E.G., Non-invasive estimation of hyperthermia temperatures with ultrasound, Int. J. Hyperthermia, 21, 6, 589-600, September 2005.
  • [2] Balch W.E., Morimoto R.I., Dillin A., Kelly J.W., Adapting proteostasis for disease intervention, Science, 319, 916-919 (2008).
  • [3] Bazan I., Vazques M., Ramoz A., Vera A., Leija L., A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers, Ultrasonics, 49, 49358-376 (2009).
  • [4] Beere H.M., The stress of dying: the role of heat shock proteins in the regulation of apoptosis, J. Cell Sci., 117, 13, 2641-2651 (2004).
  • [5] Daniels M.J., Jiang J., Varghese T., Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models, Ultrasonics, 48, 40-55 (2008).
  • [6] Humphrey V.F., Ultrasound and matter - Physical interactions, Progress in Biophysics and Molecular Biology, 93, 195-211 (2007).
  • [7] Kalmar B., Kieran D., Greensmith L., Molecular chaperones as therapeutic targets in amyotrophic lateral sclerosis, Biochemical Society Transactions, 33, 551-552 (2005).
  • [8] Kujawska T., Wójcik J., Filipczynski L., Possibile temperature effects computed for acoustic microscopy used for living cells, Ultrasound in Med. & Biol., 30, 1, 99-101 (2004).
  • [9] Kujawska T., Wójcik J., Nowicki A., Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results, will appear in: Proceedings of the 9th International Symposium on Therapeutic Ultrasound, 23-26 September 2009, Aixen Provence, France.
  • [10] Mizera A., Gambin B., Stochastic modelling of the eukaryotic heat shock response, submitted for publication, 2009.
  • [11] Morimoto R., Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging, Genes Dev., 22, 1427-1438 (2008).
  • [12] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol., 1, 93-122 (1948).
  • [13] Petre I., Mizera A., Back R.J., Computational heuristics for simplifying a biological model, [in:] Mathematical Theory and Computational Practice, Ambos-Spies K., Löwe B., Merkle W. [Eds.], Vol. 5635 of Lecture Notes in Computer Science, Springer, 2009.
  • [14] Petre I., Mizera A., Hayder C.L., Mikhailov A., Eroksson J.E., Sistonen L., Back R.J., A new mathematical model for the heat shock response, [in:] Algorithmic bioprocesses, Natural Computing, Kok J. [Ed.], Springer, 2008.
  • [15] Takayama S., Reed John C., Homma S., Heat-shock proteins as regulators of apoptosis, Oncogene, 22, 9041-9047 (2003).
  • [16] Ter Haar G.R., The Resurgense of Therapeutic Ultrasound - A 21st Centurey Phenomenon, Ultrasonics, 48, 233 (2008).
  • [17] Walther W., Stein U., Heat-responsive gene expression for gene therapy, Advanced Drug Deliery Reviews, 61, 641-649 (2009).
  • [18] Weinbaum S., Jiji L., A new simplified bioheat equation for the effect of the local blood flow on local average tissue temperature, J. Biomech. Eng., 131-139 (1985).
  • [19] Yuan Ping, Numerical analysis of an equivalent heat transfer coefficient in a porous model for simulating a biological tissue in a hyperthermia therapy, International Journal of Heat and Mass Transfer, 52, 7-8, 1734-1740 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.