PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion of water and sediment due to non-breaking waves in the swash zone

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A long wave run-up theory is applied to the modelling of wave-induced flow velocities, sediment transport rates and bottom changes in a swash zone. First, the properties of the water tongue motion and the resulting lithodynamic response are analysed theoretically. Next, an attempt is made to run the model for the natural conditions encountered on the southern Baltic Sea coast. The Lagrangian swash velocities are used to determine the Eulerian phase-resolved bed shear stresses with a momentum integral method, after which the motion of sand is described by the use of a two-layer model, comprising bedload and nearbed suspended load. Seabed evolution is then found from the spatial variability of the net sediment transport rates. The results presented are limited to cases of the small-amplitude waves that seem to be responsible for accretion on beaches.
Czasopismo
Rocznik
Strony
175--197
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
autor
  • Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN), Kościerska 7, Gdańsk 80-328, Poland, kapinski@ibwpan.gda.pl
Bibliografia
  • 1.Alsina J.M., Baldock T.E., Hughes M.G., Weir F., Sierra J.P., 2005, Sediment transport numerical modelling in the swash zone, Proc. Coastal Dynamics '05, ASCE (CD), doi:10.1061/40855(214)105.
  • 2.Baldock T.E., Alsina J.M., 2005, On the transport of suspended sediment by a swash event on a plane beach, Coast. Eng., 52 (9), 811-814, doi:10.1016/j.coastaleng.2005.06.003.
  • 3.Butt T., Russell P., 2000, Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: a review, J. Coast. Res., 16 (2), 255-268.
  • 4.Deigaard R., 1993, Modelling of sheet flow: dispersion stresses vs. the diffusion concept, Prog. Rep. 74, Inst. Hydrodyn. Hydraul. Eng., Tech. Univ. Denmark, 65-81.
  • 5.Fredsoe J., 1984, Turbulent boundary layer in combined wave-current motion, J. Hydraul. Eng.-ASCE, 110 (HY8), 1103-1120, doi:10.1061/(ASCE)0733-9429(1984)110:8(1103).
  • 6.Kaczmarek L.M., Ostrowski R., 1998, Modelling of a three-layer sediment transport system in oscillatory flow, Proc. 26th ICCE, ASCE, 2559-2572.
  • 7.Kaczmarek L.M., Ostrowski R., 2002, Modelling intensive near-bed sand transport under wave-current flow versus laboratory and field data, Coast. Eng., 45 (1), 1-18, doi:10.1016/S0378-3839(01)00041-2.
  • 8.Kapiński J., 2003, Lagrangian-Eulerian approach to modelling of wave transformation and flow velocity in the swash zone and its Seaward vicinity, Arch. Hydro-Eng. Environ. Mech., 50 (3), 165-192.
  • 9.Kapiński J., 2006, On modelling of long waves in the Lagrangian and Eulerian description, Coast. Eng., 53 (9), 759-765, doi:10.1016/j.coastaleng.2006.03.009.
  • 10.Kapiński J., Kołodko J., 1996, Wave run-up on gentle slopes: a hybrid approach, Arch. Hydro-Eng. Environ. Mech., 43 (1-4), 79-89.
  • 11.Keller J.B., Keller H.B., 1964, Water wave run-up on a beach, Res. Rep. No. NONR-3828(00), Office Naval Res., Dept. Navy, New York.
  • 12.Kobayashi N., 1999,Wave runup and overtopping on beaches and coastal structures, Adv. Coast. Ocean Eng., 5, 95-154.
  • 13.Kobayashi N., Johnson B.D., 2001, Sand suspension, storage, advection and settling in surf and swash zones, J. Geophys. Res., 106 (C5), 9363-9376, doi:10.1029/2000JC000557.
  • 14.Larson M., Kubota S., Erikson L., 2001, A model of sediment transport and profile evolution in the swash zone, Proc. Coastal Dynamics '01, ASCE, 908-917, 10.1061/40566(260)93.
  • 15.Masselink G., Puleo J.A., 2006, Swash zone morphodynamics, Cont. Shelf Res., 26 (5), 661-680, doi:10.1016/j.csr.2006.01.015.
  • 16.Nielsen P., 2002, Shear stress and sediment transport calculations for swash zone modelling, Coast. Eng., 45 (1), 53-60, doi:10.1016/S0378-3839(01)00036-9.
  • 17.Ostrowski R., 2003, A quasi phase-resolving model of net sand transport and short-term cross-shore profile evolution, Oceanologia, 45 (2), 261-282.
  • 18.Prasad R. S., Svendsen I.A., 2003, Moving shoreline boundary condition for nearshore models, Coast. Eng., 49 (4), 239-261, doi:10.1016/S0378-3839(03)00050-4.
  • 19.Pritchard D., Hogg A. J., 2003, On fine sediment transport by long waves in the swash zone of a plane beach, J. Fluid Mech., 493, 255-275, doi:10.1017/S0022112003005901.
  • 20.Pritchard D., Hogg A. J, 2005, On the transport of suspended sediment by a swash event on a plane beach, Coast. Eng., 52 (9), 1-23, doi:10.1016/j.coastaleng.2004.08.002.
  • 21.Pruszak Z., Zawadzka E., 2005, Vulnerability of Poland's coast to sea-level rise, Coast. Eng. J., 47 (2-3), 131-155, doi:10.1142/S0578563405001197.
  • 22.Shuto N., 1967, Run-up of long waves on a sloping beach, Coast. Eng. Japan, 10, 23-38.
  • 23.Van Rijn L.C., Walstra D. J.R., Grasmeijer B., Sutherland J., Pan S., Sierra J.P., 2003, The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models, Coast. Eng., 47 (3), 295-327, doi:10.1016/S0378-3839(02)00120-5.
  • 24.Zelt J.A., Raichlen F., 1990, A Lagrangian model for wave-induced harbor oscillation, J. Fluid Mech., 213, 203-225, doi:10.1017/S0022112090002294.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.