PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of an oil spill in the northern Adriatic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hypothetical cases of oil spills, caused by ship failure in the northern Adriatic, are analysed with the aim of producing three-dimensional models of sea circulation and oil contaminant transport. Sea surface elevations, sea temperature and salinity fields are applied as a forcing argument on the model's open boundaries. The Aladin-HR model with a spatial resolution of 8 km and a time interval of 3 hours is used for atmospheric forcing. River discharges along the coastline in question are introduced as point source terms and are assumed to have zero salinity at their respective locations. The results of the numerical modelling of physical oceanography parameters are validated by measurements carried out in the "Adriatic Sea monitoring programme" in a series of current meter and CTD stations in the period from 1 January 2008 to 15 November 2008. The oil spill model uses the current field obtained from a circulation model. Besides the convective dispersive transport of oil pollution (Lagrangian model of discrete particles), the model takes into account a number of reactive processes such as emulsification, dissolution, evaporation and heat balance between the oil, sea and atmosphere. An actual event took place on 6 February 2008, when the ship "Und Adriyatik" caught fire in the vicinity of the town of Rovinj (Croatia) en route from Istanbul (Turkey) to Trieste (Italy). At the time the fire broke out, the ship was carrying around 800 tons of oil. Thanks to the rapid intervention of the fire department, the fire was extinguished during the following 12 hours, preventing possible catastrophic environmental consequences. Based on this occurrence, five hypothetical scenarios of ship failure with a consequent spill of 800 tons of oil over 12 hours were analysed. The main distinction between the simulated scenarios is the time of the start of the oil spill, corresponding to the times when stronger winds were blowing (> 7 m s-1) with a minimum duration of 24 h within the timeframe. Each scenario includes a simulation of oil transport for a period of two months after the beginning of the oil spill. The results show that the coastal belt between the towns of Porec and Rovinj is seriously exposed to an oil pollution load, especially a few days after a strong and persistent bora (NE wind).
Słowa kluczowe
Czasopismo
Rocznik
Strony
143--173
Opis fizyczny
Bibliogr. 54 poz., mapki, tab., wykr.
Twórcy
autor
autor
autor
Bibliografia
  • 1.Acta Adriatica, 2006, 47 (Suppl.), 1-266, [http://jadran.izor.hr/acta/eng/].
  • 2.Andročec V., Beg-Paklar G., DadićV., Djakovac T., Grbec B., Janeković I., KrstulovićN., Kupilić G., Leder N., Lončar G., MarasovićI., Precali R., Šolić M., 2009, The Adriatic Sea Monitoring Program - Final Report, MCEPP, Zagreb, Croatia.
  • 3.Beg Paklar G., BajićA ., Dadić V., Grbec B., Orlić M., 2005, Bora-induced currents corresponding to different synoptic conditions above the Adriatic, Ann. Geophys., 23, 1083-1091.
  • 4.Bird R. B., StewardW. E., Lightfoot N. E., 1960, Transport Phenomena, Wiley and Sons, New York, 780 pp.
  • 5.Bretherton F.P., Fauday C.B., 1976, A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep-Sea Res., 23, 559-582.
  • 6.Brzović N ., 1999, Factors affecting the Adriatic cyclone and associated windstorms, Contribut. Atmos. Phys., 72, 51-65.
  • 7.Brzović N ., Strelec-Mahović N., 1999, Cyclonic activity and severe jugo in the Adriatic, Phys. Chem. Earth Pt. B, 24, 653-657.
  • 8.CMFMWOS, 1985, Computer model forecasting movements and weathering of oil spills - final report for the European Economic Community, WQI & DHI.
  • 9.CONCAWE, 1983, Characteristics ofp etroleum and its behaviour at sea, Report No. 8/83, CONCAWE, Den Haag, 112 pp.
  • 10.Cordoneanu E., Geleyn J.F., 1998, Application to local circulation above the Carpathian-Black Sea area ofa NWP-type meso-scale model, Contrib. Atmos. Phys., 71, 191-212.
  • 11.Courtier P.C., Freydier J.F., Geleyn F., Rochas M., 1991, The ARPEGE project at METEO-FRANCE, Proceedings from the ECMWF workshop on numerical methods in atmospheric models, 9-13 September 1991, 2, 193-231.
  • 12.Cushman-Roisin B., Gačic M., Poulain P.-M., Artegiani A., 2001, Physical oceanography of the Adriatic Sea: past, present and future, Kluwer Acad., Norwell, Mass, 304 pp.
  • 13.Cushman-Roisin B., Korotenko K.A., 2007, Mesoscale-resolving simulations of summer and winter bora events in the Adriatic Sea, J. Geophys. Res., 112 (C11), doi:10.1029/2006JC003516.
  • 14.Cushman-Roisin B., Korotenko K., Galos C., Dietrich D., 2007, Simulation and characterization of the Adriatic Sea mesoscale variability, J. Geophys. Res., 112 (C03S14), doi:10.1029/2006JC003515.
  • 15.Delvigne G.A. L., Sweeney C. E., 1988, Natural dispersion ofoil , Oil Chem. Pollut.,4 (4), 281-310, doi:10.1016/S0269-8579(88)80003-0.
  • 16.DHI, 2005, Mike 3 flow model - user guide, DHI Water Environ. Soft., [www.dhigroup.com].
  • 17.Duffie J.A., Beckmann W.A., 2006, Solar engineering of thermal processes, John Wiley & Sons, New Jersey, 893 pp.
  • 18.Fay J., 1969, The spread of oil slicks on a calm sea, [in:] Oil on the sea, D.P. Hoult (ed.), Plenum Press., New York, 53-63.
  • 19.Fingas M., 2011, Oil spill science and technology, Elsevier-Gulf Prof. Publ.,1156 pp.
  • 20.Flores H., Andreatta A., Llona G., Saavedra I., 1998, Measurements of oil spill spreading in the wave tank using digital image processing, [in:] Oil and hydrocarbon spills - modelling, analysis and control, WIT Press, Southampton, 165-173.
  • 21.Galos C., 2000, Seasonal circulation in the Adriatic Sea, M.S. thesis, Dartmouth Coll., Hanover, 127 pp.,
  • 22.Gardiner C.W., 1985, Handbook of stochastic methods: for physics, chemistry and natural science, Springer-Verlag, Berlin, 409 pp.
  • 23.Guo W. J., Wang Y.X., 2009, A numerical oil spill model based on a hybrid method, Mar. Pollut. Bull., 58 (5), 726-734, doi:10.1016/j.marpolbul.2008.12.015, PMid:19157462.
  • 24.Hasselmann K., 1974, On spectral dissipation of ocean waves due to white capping, Bound.-Lay. Meteorol., 6 (1-2), 107-127, doi:10.1007/BF00232479.
  • 25.Hossain K., Mackay D., 1980, Demoussifier - a new chemical for oil spill countermeasures, Spill Technol. Newsletter, 5 (6), 154-156.
  • 26.IKU - Institut For Kontinentalsokkelundersogelser, 1984, The experimental oil spill in Haltenbanken 1982, IKU Publ. No. 112, Trondheim, Norway.
  • 27.IHO - International Hydrographic Organization, 1953, Limits of oceans and seas, Spec. Publ. No. 28, 3rd edn., IMP Monegasque, Monte Carlo, 45 pp.
  • 28.Ivatek-Šahdan S., Tudor M., 2004, Use of high- resolution dynamical adaptation in operational suite and research impact studies, Meteorol. Z., 13 (2), 99-08, doi:10.1127/0941-2948/2004/0013-0099.
  • 29.Janeković I ., Bobanović J. , Kuzmić M., 2003, The Adriatic Sea M2 and K1 tides by 3D model and data assimilation, Estuar. Coast. Shelf Sci., 57 (5-6), 873-885.
  • 30.Janeković I ., Kuzmić M., 2005, Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207-3218.
  • 31.Janeković I ., Sikirić-Dutour M., 2007, Improving tidal open boundary conditions for the Adriatic Sea numerical model, Geophys. Res. Abstr., 9, 203-217, doi:10.5194/angeo-23-3207-2005.
  • 32.Kloeden P.E., Platen E., 1999, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin, 636 pp.
  • 33.Korotenko K., Bowman M., Dietrich D., 2010, High-resolution numerical model for predicting the transport and dispersal ofoil spilled in the Black Sea, Terr. Atmos. Ocean. Sci., 21 (1), 123-136, doi:10.3319/TAO.2009.04.24.01(IWNOP).
  • 34.Korotenko K., Mamedov R., Kontar A., Korotenko L., 2004, Particle tracking method in the approach for prediction of oil slick transport in the sea: modeling oil pollution resulting from river input, J. Mar. Syst., 48 (1-4), 159-170, doi:10.1016/j.jmarsys.2003.11.023.
  • 35.Korotenko K., Mamedov R., Mooers C., 2001, Prediction of the dispersal of oil transport in the Caspian Sea resulting from a continuous release, Spill Sci. Technol. Bull., 6 (5-6), 323-339, doi:10.1016/S1353-2561(01)00050-0.
  • 36.Lamarre E., Melville W. K., 1991, Air entrainment and dissipation in breaking waves, Nature, 351, 469-472, doi:10.1038/351469a0.
  • 37.Lončar G., Ocvirk E., Andročec V., 2010, Comparison of modelled and measured surface wind waves, Gradevinar, 62 (3), 45-55.
  • 38.Mackay D., Bruis I., Mascarenhas R., Peterson S., 1980, Oil spill processes and models, Environmental protection service publication No. EE-8, Canada.
  • 39.Members of the ALADIN international team, 1997, The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research, WMO Bull., 46, 317-324
  • 40.Morović M ., Ivanov A., 2011, Oil Spill Monitoring in the Croatian Adriatic Waters: needs and possibilities, Acta Adriat., 52 (1), 45-56.
  • 41.Orlić M., Gačić M ., La Violette P. E., 1992, The currents and circulation of the Adriatic Sea, Oceanol. Acta, 15, 109-124.
  • 42.Orlić M ., Kuzmić M., Pasarić Z., 1994, Response of the Adriatic Sea to the bora and sirocco forcing, Cont. Shelf Res., 14 (1), 91-116, doi:10.1016/0278-4343(94)90007-8.
  • 43.Owens E.H., Taylor E., Humphrey B., 2008, The persistence and character of stranded oil on coarse-sediment beaches, Mar. Pollut. Bull., 56 (1), 14-26, doi:10.1016/j.marpolbul.2007.08.020, PMid:18001804.
  • 44.Raicich F., 1996, On the fresh water balance of the Adriatic Sea, J. Mar. Syst., 9 (3-4), 305-319, doi:10.1016/S0924-7963(96)00042-5.
  • 45.Rodi W., 1987, Examples of calculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 92 (C5), 5305-5328, doi:10.1029/JC092iC05p05305.
  • 46.Science of the Total Environment, 2005, 353 (1-3), 1-380, [http://www.journals.elsevier.com/science-of-the-total-environment/], doi:10.1016/j.scitotenv.2005.09.007.
  • 47.Smagorinsky J., 1993, Some historical remarks on the use of nonlinear viscosities, [in:] Large eddy simulation ofc omplex engineering and geophysical flows, B. Galperin & S. Orszag (eds.), Cambridge Univ. Press, 1-34.
  • 48.Supić N ., Orlić M., Degobbis D., 2000, Istrian Coastal Countercurrent and its year-to-year variability, Estuar. Coast. Shelf Sci., 51 (3), 385-397, doi:10.1006/ecss.2000.0681.
  • 49.Tkalich P., Chan E. S., 2002, Vertical mixing of oil droplets by breaking waves, Mar. Pollut. Bull., 44 (11), 1219-1229, doi:10.1016/S0025-326X(02)00178-9.
  • 50.Wheeler R. B., 1978, The fate of petroleum in the marine environment, Exxon Prod. Res. Co., Houston, TX, 32 pp.
  • 51.Wu J., 1994, The sea surface is aerodynamically rough even under light winds, Bound.-Lay. Meteorol., 69 (1-2), 149-158. doi:10.1007/BF00713300.
  • 52.Yang W. E., Wang H., 1977, Modelling of oil evaporation in aqueous environment, Water Res., 11 (10), 879-887, doi:10.1016/0043-1354(77)90076-8.
  • 53.Zaninović K ., Gajić-Čapka M., Perčec-Tadić M., 2008, Climate atlas of Croatia 1961-1990; 1971-2000, Meteorol. Hydrol. Service Croatia, Zagreb.
  • 54.Zore-Armanda M., Gačić M ., 1987, Effects of Bora on the circulation in the North Adriatic, Ann. Geophys., 5B, 93-102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0019-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.