Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Changes in phytoplankton pigment concentrations in Case 2 waters (such as those of the Baltic Sea) were analysed in relation to the light intensity and its spectral distribution in the water. The analyses were based on sets of empirical measurements containing two types of data: chlorophyll and carotenoid concentrations obtained by HPLC, and the distribution of underwater light fields measured with a MER 2049 spectrophotometer - collected during 27 research cruises on r/v "Oceania" in 1999-2004. Statistical analysis yielded relationships between the total relative (to chlorophyll a concentrations) concentrations of major groups of phytoplankton pigments and optical depth τ, between the total relative concentrations of major groups of photosynthetic pigments (chlorophylls b (C_chl b tot / Cchl a tot), chlorophylls c (C_chl c tot / C_chl a tot) and photosynthetic carotenoids (CPSC tot / C_chl a tot)) and the spectral fitting function (the "chromatic acclimation factor"), and between the total relative concentrations of photoprotective carotenoids (CPPC tot / C_chl a tot) in Baltic waters and the potentially destructive radiation (PDR), defined as the absolute amount of energy in the blue part of the spectrum (400-480 nm) absorbed by unit mass of chlorophyll a. The best approximations were obtained for the total chlorophyll c content, while the relative estimation errors were the smallest (σ_ = 34.6%) for the approximation to optical depth and spectral fitting function. The largest errors related to the approximation of chlorophyll b concentrations: σ_ = 56.7% with respect to optical depth and 57.3% to the spectral fitting function. A comparative analysis of the relative (to chlorophyll a content) concentrations of the main groups of pigments and the corresponding irradiance characteristics in ocean (Case 1) waters and Baltic waters (Case 2 waters) was also carried out. The distribution of C_chl b tot / C_chl a tot ratios with respect to optical depth reveals a decreasing trend with increasing τ for Baltic data, which is characteristic of photoprotective pigments and the reverse of the trend in oceans. In the case of the C_chl c tot approximations, the logarithmic statistical error is lower for Baltic waters than for Case 1 waters: σ_ = 34.6% for Baltic data and σ_ = 39.4% for ocean data. In relation to photoprotective carotenoids (CPPC), ?_ takes a value of 38.4% for Baltic waters and 36.1% for ocean waters. The relative errors of the approximated concentrations of different pigment groups are larger than those obtained for ocean waters. The only exception is chlorophyll c, for which the logarithmic statistical error is about 8.8% lower (σ_ = 34.6% for Baltic waters and 38.2% for ocean waters). Analysis of the errors resulting from the approximations of the photoprotective carotenoid content, depending on the energy characteristics of the underwater irradiance in the short-range part of PAR, showed that the relative errors are 1.3 times higher for Baltic waters than for ocean waters: σ_ = 38.4% for Baltic waters and 32.0% for ocean waters.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
7--27
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland, aston@iopan.gda.pl
Bibliografia
- 1.Babin M., Sadoudi N., Lazzara L., Gostan J., Partensky F., Bricaud A., Veldhuis M., Morel A., Falkowski P.G., 1996, Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Opt. XIII, Proc. SPIE, 2963, 314-319, doi:10.1117/12.266462.
- 2.Berner T., Dubinsky Z., Wyman K., Falkowski P.G., 1989, Photoadaptation and the 'package effect' in Dunaliella tertiolecta (Chlorophyceae), J. Phycol., 25 (1), 70-78, doi:10.1111/j.0022-3646.1989.00070.x.
- 3.Bricaud A., Morel A., Prieur L., 1983, Optical efficiency factors of some phytoplankters, Limnol. Oceanogr., 28 (5), 816-832, doi:10.4319/lo.1983.28.5.0816.
- 4.Demmig-Adams B., 1990, Carotenoids and photoprotection in plants: A role of xanthophyll zeaxanthin, Biochim. Biophys. Acta, 1020 (1), 1-24, doi:10.1016/0005-2728(90)90088-L.
- 5.Demmig-Adams B., AdamsW.W., 1996, The role of xanthophyll cycle catrotenoids in the protection of photosynthesis, Trends Plant Sci., 1 (1), 21-26, doi:10.1016/S1360-1385(96)80019-7.
- 6.Dera J., Woźniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582, doi:10.5697/oc.52-4.533.
- 7.Egeland E. S., EikremW., Throndsen J., Wilhelm C., Zapata M., Liaaen-Jensen S., 1995, Carotenoids from further prasinophytes, Biochem. Syst. Ecol., 23 (7-8), 747-755, doi:10.1016/0305-1978(95)00075-5.
- 8.Falkowski P.G., LaRoche J., 1991, Acclimation to spectral irradiance in algae, J. Phycol., 27 (1), 8-14, doi:10.1111/j.0022-3646.1991.00008.x.
- 9.Ficek D., Kaczmarek S., Stoń-Egiert J.,Woźniak B., Majchrowski R., Dera J., 2004, Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data, Oceanologia, 46 (4), 533-555.
- 10.Goericke R., Montoya J.P., 1998, Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigment ratios under nutrient- and light-limited growth, Mar. Ecol.-Prog. Ser., 169, 97-112, doi:10.3354/meps169097.
- 11.Harrison W.G., Platt T., 1986, Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations, Polar Biol., 5 (3), 153-164, doi:10.1007/BF00441695.
- 12.Henriksen P., Riemann B., Kaas H., Sorensen H.M., Sorensen H. L., 2002, Effects of nutrient-limitation and irradince on marine phytoplankton pigments, J. Plankton Res., 24 (9), 835-858, doi:10.1093/plankt/24.9.835.
- 13.Hoffmann B., Senger H., 1988, Kinetics of photosynthesis apparatus adaptation in Scenedesmus obliquus to change in irradiance and light quality, Photochem. Photobiol., 47 (5), 737-739, doi:10.1111/j.1751-1097.1988.tb02773.x.
- 14.Leeuwe van M.A., Stefels J., 1998, Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition, J. Phycol., 34 (3), 496-503, doi:10.1046/j.1529-8817.1998.340496.x.
- 15.Mackey D. J., Higgins H.W., Mackey M.D., Holdsworth D., 1998, Algal classesabundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX, Deep-See Res. Pt. I, 45 (9), 1441-1468, doi:10.1016/S0967-0637(98)00025-9.
- 16.Majchrowski R., 2001, The effect of lighting on the characteristics of light absorption by phytoplankton in the sea, Stud. i rozpr., Pom. Akad. Pedag., 1, Słupsk, 131 pp., (in Polish).
- 17.Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
- 18.Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
- 19.Majchrowski R., Ostrowska M., 2009, Mathematical description of vertical algal accessory pigment distributions in oceans - a brief presentation, Oceanologia, 51 (4), 561-580, doi:10.5697/oc.51-4.561.
- 20.Majchrowski R.,Woźniak B., Dera J., Ostrowska M., Ficek D., Kaczmarek S., 1998, Relations between phytoplankton pigment composition and spectral irradiance distribution in the ocean, Progr. Abstr., Ocean Opt. XIV, Kailua-Kona, 60 pp.
- 21.Mitchell B.G., Kiefer D.A., 1988, Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton, Deep-Sea Res., 35, 639-663, doi:10.1016/0198-0149(88)90024-6.
- 22.Morel A., Lazzara L., Gostan G., 1987, Growth rate and quantum yield time response for a diatom to changing irradiances (energy and color), Limnol. Oceanogr., 32 (5), 1066-1084, doi:10.4319/lo.1987.32.5.1066.
- 23.Niyogi K.K., Bjィorkman O., Grossman A.R., 1997, The roles of specificxanthophylls in photoprotection, P. Natl. Acad. Sci. USA, 94 (25), 14162-14167, doi:10.1073/pnas.94.25.14162.
- 24.Sathyendranath S., Lazzara L., Prieur L., 1987, Variations in the spectral values of specific absorption of phytoplankton, Limnol. Oceanogr., 32 (2), 403-415, doi:10.4319/lo.1987.32.2.0403.
- 25.Schlüter L., Mohlenberg F., Havskum H., Larsen S., 2000, The use of phytoplankton pigments for identifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios, Mar. Ecol.- Prog. Ser., 192, 49-63, doi:10.3354/meps192049.
- 26.Sosik H.M., Mitchell B.G., 1991, Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta, Limnol. Oceanogr., 36 (5), 910-921, doi:10.4319/lo.1991.36.5.0910.
- 27.Staehr P.A., Henriksen P., Markager S., 2002, Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability, Mar. Ecol.-Prog. Ser., 238, 47-59, doi:10.3354/meps238047.
- 28.Stoń J., Kosakowska A., 2002, Phytoplankton pigments designation - an application of RP-HPLC in qualitative and quantitative analysis, J. Appl. Phycol., 14 (3), 205-210, doi:10.1023/A:1019928411436.
- 29.Stoń-Egiert J., Kosakowska A., 2005, RP-HPLC determination of phytoplankton pigments - comparison of calibration results for two columns, Mar. Biol., 147 (1), 251-260, doi:10.1007/s00227-004-1551-z.
- 30.Stramski D., Sciandra A., Claustre H., 2002, Effects of temperature, nitrogen, and light limitation on the optical properties of the marine diatom Thalassiosira pseudonana, Limnol. Oceanogr., 47 (2), 392-403, doi:10.4319/lo.2002.47.2.0392.
- 31.Sukenik A., Bennett J., Falkowski P.G., 1987, Light-saturated photosynthesis-limitation by electron transport or carbo fixation, Biochem. Biophys. Acta, 891 (3), 205-215, doi:10.1016/0005-2728(87)90216-7.
- 32.Sukenik A., Bennett J., Mortain-Bertrand A., Falkowski P.G., 1990, Adaptation of photosynthetic apparatus to irradiance in Dunaliella tertiolecta, Plant Physiol., 92 (4), 891-898, doi:10.1104/pp.92.4.891.
- 33.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.
- 34.Woźniak B., Dera J., Ficek D., Majchrowski R., Ostrowska M., Kaczmarek S., 2003, Modelling light and photosynthesis in the marine environment, Oceanologia, 45 (2), 171-245.
- 35.Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., Darecki D., 1997a, 'IOPAS initial model' of marine primary production for remote sensing application, Oceanologia, 39 (4), 377-395.
- 36.Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., DareckiM., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean - the IO PAS initial model for remote sensing application, Proc. SPIE, 3222, 516-528.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0063