PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three–dimensional numerical modeling of the water exchange between the Persian Gulf and the Gulf of Oman through the Strait of Hormuz

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the Navier–Stokes equations that embrace conservation equations of momentum, volume, heat and salt are solved by using a 3-D numerical model. Then, based on the values obtained, the structure and variability of the outflow/inflow between the Persian Gulf and the Gulf of Oman is investigated. The basic equations are cast in a bottom-following, sigma coordinate system which greatly simplifies the numerical solution. Conservative finite difference methods are used to discretise the mathematical model in space. The model results, which are in agreement with limited direct measurements in the Strait, show a volume transport of deep outflow and a near–surface outflow from the Persian Gulf to the Gulf of Oman through the southern part of the Strait. About 65% of total outflow occurs in the bottom layer (40 m to the bottom) and 35% in the upper layer (from the surface to 40 m deep) during the year. The annual mean of surface inflow from the Gulf of Oman to the Persian Gulf, which occurs within the northern part of the Strait is about 0.2 Sv. The net volume transport annual mean through the Strait into the Persian Gulf is about 0.03 Sv. Strong temperature and density contrasts between bottom and surface layer waters are established in spring and summer. These are more pronounced in the southern part of the Strait. In the northern part of the Strait, the salinity contrast is nearly constant, but in the southern half it varies significantly during the year.
Słowa kluczowe
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
  • Physics Department, Faculty of Sciences, University of Isfahan, Isfahan, 81746, Iran, shz@phys.ui.ac.ir
Bibliografia
  • 1.Ahmad, F. & Sultan, S. A. R. (1991). Annual mean surface heat fluxes in the Gulf and the net heat transport Through the Strait of Hormuz, ATMOS. OCEAN., 29, 54-61.
  • 2.Alessi, S. A, Hunt, H. D. & Bower, A. S. (1999). Hydrographic data from the U.S. Naval Oceanographic Office: Persian Gulf, southern Red Sea, and Arabian Sea 1923-1996 (pp. 70). Woods Hole Oceanographic Inst. (Tech. Rept. WHOI-99-02).
  • 3.Blumberg, A. F. & Mellor, G. L. (1987). A description of a three-dimensional coastal Ocean circulation model. COAST. EST. S., 4, 1-16.
  • 4.Brewer, P.G. & Dyrssen, D. (1985). Chemical oceanography of the Persian Gulf.. Prog. Oceanogr., 14, 41- 55.
  • 5.Brewer, P. G., Fleer, A. P., Kadar, S., Shafar, D. K. & Smith, C. L. (1978). Report A: Chemical Oceanographic data from the Persian Gulf of Oman. Woods Hole, Mass.: Woods Hole Oceanogr. Inst. (Rep. WHOI-78-37).
  • 6.Deleersnijder, E. & Ruddic, K. G. (1992). A generalized vertical coordinate for 3D marine models. Bulletin de la Soci´et´e Royale des Sciences de Li`ege., 61, 489-502.
  • 7.Elhakeem, A. A., Elshorbagy, W. & Chebbi, R. (2007). Oil Spill Simulation and Validation in the Persian Gulf with Special Reference to the UAE Coast. Water Air Soil Poll., 184, 243-54.
  • 8.Emery, K.O. (1956). Sediments and water of the Persian Gulf, Bull. Am. Assoc. petrol. Geol., 40, 2354 - 2383.
  • 9.Gill, A. E. (1982). Atmosphere-Ocean Dynamics. International Geophysics Series, Academic Press, Orlando, 30, 662.
  • 10.Geernaert, G. L. (1990). Bulk parameterizations for the wind stress and heat fluxes. In Geernaert, G. L. & Plant, W. J. (Eds.), Surface Waves Fluxes (1, pp. 91-172). Dordrecht: Kluwer Academic Publishers.
  • 11.Hassanzadeh, S., Hosseinibalam, F. & Rezaei-Latifi, A. (2010). Numerical modeling of salinity variation due to wind and thermohaline forcing in the Persian Gulf. Appl..Math. Modelling., 35 (3), 1512-1537.
  • 12.Johns, W. E., Yao, F., Olson, D. B., Josey, S. A., Grist, J. P. & Smeed, D. A. (2003). Observation of seasonal exchange through the Straits of Hormuz and the inferred freshwater budgets of the Persian Gulf. J. Geophys. Res., 108 (C12), 3391. DOI: 10. 1029 /2003JC001881.
  • 13.Kampf, J. & Sadrinasab, M. (2006). The circulation of the Persian Gulf: a numerical study. Ocean sci., 2, 27 - 41.
  • 14.Luyten, P. J. & De Mulder, T. (1992). A module representing surface fluxes of momentum and heat (pp. 30). Technical Report No. 9 MAST-0050-C (MUMM).
  • 15.Luyten, P.J., Deleersnijder, E., Ozer, J. & Ruddick, K.G. (1996). Presentation of a family of turbulence closure models for stratified shallow water flows and preliminary application to the Rhine outflow region. Cont. Shelf Res., 16, 101-30.
  • 16.Luyten, P. G., Jones, J. E., Procto, R., Tabor, A., Tett, P. & Wil-Allen, K. (1999). COHERENS - A Coupled hydrodynamical-ecological model for regional and shelf seas: user documentation, MUMM Rep. Management Unit of the Mathematical Models of the North sea.
  • 17.Mesinger, F. & Arakawa, A. (1976). Numerical methods used in atmospheric models. Global Atmospheric Research Programme (GARP), 1 (17), 64.
  • 18.Ohashi, K., Sheng, J., Thompson, K. R., Hannah, C. G. & Ritchie, H. (2009). Numerical study of three-dimensional shelf circulation on the Scotian Shelf using a shelf circulation model. Cont. Shelf Res., 29, 2138-2156.
  • 19.Oey, L.Y. & Chen, P. (1992). A model simulation of circulation in the Northeast Atlantic shelves and seas. J. Geophys.Res., 97, 20087-115.
  • 20.Phillips, N.A. (1957). A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 14, 184-185.
  • 21.Pous, S. P., Carton, X. & Lazure, P. (2004). Hydrology and circulation in the Strait Of Hormuz and the Gulf Of Oman - Results from the GOGP99 Experiment:1. Strait of Hormuz. J. Geophys. RES., 109.
  • 22.Rennie, S. J., Pattiaratchi, C. B. & McCauley, R. D. (2009). Numerical simulation of the circulation within the Perth Submarine Canyon, Western Australia. Cont. Shelf Res., 29, 2020-2036.
  • 23.Reynolds, R.M. (1993). Physical Oceanography of the Gulf, Strait of Hormuz, and the Gulf Oman - Result from the Mt. Mitchel expedition. Mar. pol. Bull., 27, 35 - 59.
  • 24.Smagorinsky, J. (1963). General circulation experiments with the primitive equations, The basic experiment. Monthly Weather Review, 91, 99-165.
  • 25.Steinhorn, I. (1991). Salt flux and evaporation. J. Phys. Ocesnogr., 21, 1681-83.
  • 26.Stewart, R. H. (2008). Introduction to Physical Oceanography (pp. 345). Department of Oceanography Texas A and M University.
  • 27.Swift, S. A. & Bower, A. S. (2003). Formation and circulation of dense water in the Persian Gulf. J. Geophys. Res 108 (C1), 3004. DOI: 10.1029/ 2002JC001360.
  • 28.UNESCO. (1981). Tenth report of the joint panel on oceanographic tables and standards. UNESCO Tech. Pap. In Marine Sci., 36.
  • 29.Zhang, Z., Lowe, R., Falter, J. & Lvey, G. (2011). A numerical model of wave- and current-driven nutrient uptake by coral reef communities. Ecological Modelling., 222(8), 1456-70
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.