PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of traumatic acid on the growth, metabolite content and antioxidant activity in Wolffia arrhiza (L.) Wimm. (Lemnaceae)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research presented here was conducted in order to determine the influence of exogenous traumatic acid (TA) on the growth, metabolism, and antioxidative activity of vascular water plant, Wolffia arrhiza Wimm. The research was concerned with TA influences, in concentrations of 10^-8 M – 10^-4 M, on fresh W. arrhiza, and on primary metabolites, such as monosaccharides, proteins, chlorophylls a and b, and carotenoids. It was determined that TA causes a substantial increase in these metabolites compared to the control, especially at concentrations of 10^-7 – 10^-6 M. Polyacrylamide gel electrophoresis of proteins (SDS-PAGE) was conducted in order to specify in more detail the qualitative changes in proteins, whose synthesis is stimulated by TA. Under the influence of TA W. arrhiza cells saw an induction of de novo synthesis of 3 proteins with molecular weights of 10, 58, and 90 kDa. It was proven that 10^-7 – 10^-6 M concentrations of TA also increase photosynthesis intensity and the activity of antioxidative enzymes (ascorbate peroxidase, catalase, glutathione reductase, and superoxide dismutase). In cells treated with exogenous TA, lipids' peroxidation decreases (expressed as a drop in malonyl dialdehyde) and sulfhydryl (SH) groups in proteins increase. Based on our research, TA plays an important role in the regulation of growth and metabolism in W. arrhiza. Our results also show that TA possibly participates in the activation of antioxidant enzymes and its probable participation in the metabolic responses of lower water plants to oxidative stresses.
Rocznik
Strony
24--34
Opis fizyczny
Bibliogr. 53 poz., wykr.
Twórcy
autor
  • University of Białystok, Institute of Biology, Department of Plant Biochemistry and Toxicology, Świerkowa 20B, 15-950 Białystok, Poland, annapiet@uwb.edu.pl
Bibliografia
  • 1.Aeby, H. (1984). Catalase in vitro. Methods Enzymol., 105, 125-212.
  • 2.Asafova, E. V., Asaleeva, G. A., Yakovleva, V. G. & Tarchevskii, I. A. (2005). The effect of traumatic acid on tyrosine phosphorylation of proteins in Pea seedlings. Dokl. Biochem. Biophys., 405, 426-428.
  • 3.Beauchamp, C. & Fridovich, I. (1971). Superoxide dismutase improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 444, 276-287.
  • 4.Bogatek, R., Côme, D., Corbineau, F., Ranjan, R. & Lewak, S. (2002). Jasmonic acid effects dormancy and sugar catabolic in germinating apple embryos. Plant Physiol. Biochem., 40, 167-173.
  • 5.Bowler, C., Van Montague, M. & Inez, D. (1992). Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 43, 83-116.
  • 6.Champavier, Y., Pommier, M. T., Arpin, N., Voiland, A. & Pellon, G. (2000). 10-oxo-trans-8-decenoic acid (ODA): production, biological activities, and comparison with other hormone-like substances in Agaricus bisporus. Enzyme Microb. Tech., 26, 243-251.
  • 7.Ciereszko, I. (2002). Sugar regulation and signaling in the plant cells. Post. Biol. Kom., 29, 269-289.
  • 8.Ciereszko, I. (2006). Sucrose metabolism control in plants as response to changes of environmental condition. Kosmos, 55, 229-241.
  • 9.Croft, K. P. C., Jüttner, F. & Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol., 101, 13-24.
  • 10.Czerpak, R. & Piotrowska, A. (2005). Wolffia arrhiza - the smallest plant with the highest adaptation ability and applications. Kosmos, 54, 241-250.
  • 11.Fairbanks, J., Steck, T. L. & Wallach, D. F. H. (1971). Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry, 10, 2606-2617.
  • 12.Farmer, E., Johnson, R. & Ryan, C. (1992). Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol., 98, 995-1002.
  • 13.Foyer, C. H. & Halliwel, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta, 133, 21-25.
  • 14.Foyer, C. H. & Noctor, G. (2005). Oxidant and antyoxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28, 1056-1071.
  • 15.Fujita, M., Mori, K. & Kodera, T. (1999). Nutrient removal and starch production through cultivation of Wolffia arrhiza. J. Biosci. Bioeng., 87, 194-198.
  • 16.Gapper, C. & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiol., 141, 341-345.
  • 17.Gill, P. K., Sharma, A. D., Singh, P. & Bhullar, S. S. (2003). Changes in germination, growth and soluble sugar contents of Sorgum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul., 40, 157-162.
  • 18.Glaeser, J. & Klug, G. (2005). Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology, 151, 1927-1938.
  • 19.Goldsmith, C. R., Jonas, R. T. & Stack T. D. P. (2002). C-H bond activation by a ferric methoxide complex: modeling the rate-determining step in the mechanism of lipoxygenase. J. Am. Chem. Soc., 124, 83-96.
  • 20.Grekchin, A. N. (1998). Recent developments in biochemistry of the plant lipoxygenase pathway. Prog. Lipid Res., 37, 317-352.
  • 21.Grekchin, A. N. (2002). Hydroperoxide lyase and divinyl ether synthase. Prostag. Oth. Lipid M., 68-69, 457-470.
  • 22.Haluškova, L., Valentovičová, K., Huttová, J., Mistrik, I. & Tamás, L. (2010). Effect of heavy metals on root growth and peroxidase activity in barley root tip. Acta Physiol. Plant., 32, 59-65.
  • 23.Hassanein, R. A., Hassanein, A. A., El-din, A. B., Salama, M. & Hashem, H. A. (2009). Role of jasmonic acid and abscisic acid treatments in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust. J. Bas. Appl. Sci., 3, 904-919.
  • 24.Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189-198.
  • 25.Howe, G. A. & Schilmiller, A. L. (2002). Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol., 5, 230-236.
  • 26.Hung, K. T. & Kao, C. H. (1997). Senescence of rice leaves XXXV. Promotive effects of jasmonates. Bot. Bull. Acad. Sin., 38, 85-89.
  • 27.Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H. J., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant., 31, 427-436.
  • 28.Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep., 21, 829-837.
  • 29.Klimecka, M., Trojanek, J. & Muszyńska, G. (2002). Plant protein kinases phosphorylating tyrosine. Post. Bioch., 48, 74-80.
  • 30.Kwak, J. M., Nguyen, V., Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal response. Plant Physiol., 141, 323-329.
  • 31.Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
  • 32.León, J., Rojo, E. & Sánchez-Serrano, J. J. (2001). Wound signaling in plants. J. Exp. Bot., 52, 1-9.
  • 33.Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275.
  • 34.Lloyd, N. D. H., Canvin, D. T. & Culver, D. A. (1977). Photosynthesis and photorespiration in algae. Plant Physiol., 59, 936-940.
  • 35.Mical, A. & Krotke, A. (1999). Wolffia arrhiza (L.) - small but strong. Acta Hydrobiol., 6, 165-170.
  • 36.Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498.
  • 37.Nakano, Y. & Asada, K. (1981). Hydrogen peroxidase is scavended by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880.
  • 38.Nelson, N. (1944). A photometric adaptation of the Samogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380.
  • 39.Pietryczuk, A, Piotrowska, A & Czerpak, R. (2008). The influence of traumatic acid on the growth and metabolite content of the green alga Chlorella vulgaris Beijerinck. Oceanol Hydrobiol Stud., 37 (1), 3-15.
  • 40.Rice-Evans, C. A., Diplock, A. T. & Symons, M. C. R. (1991). Techniques in free radical research. London: Elsevier.
  • 41.Schweizer, P., Gees, R. & Mösinger, E. (1993). Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f.sp. Hordei. Plant Physiol., 102, 503-511.
  • 42.Scott, F. M., Bystrom, B. G. & Sjaholm, V. (1961). Anatomy of traumatic acid-treated internodes of Ricinus communis. Bot. Gaz., 122, 311-314.
  • 43.Siedow, J. N. (1991). Plant lipoxygenase: structure and function. Ann. Rev. Plant Physiol., 42, 145-188.
  • 44.Sivasankar, S., Sheldrick, B. & Rothstein, S. J. (2000). Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol., 122, 1335-1342.
  • 45.Stelt, M., Noordermeer, M. A., Kiss, T., Zadelhoft, G., Merghart, B., Veldink, G. A. & Vliegenthart, F. G. (2000). Formation of a new class of oxylipins from N-acyl(ethanol)amines by the lipoxygenase pathway. Eur. J. Biochem., 267, 2000-2007.
  • 46.Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stres: a delicate balanse between signaling and destruction. Physiol. Plant., 126, 45-51.
  • 47.Szalai, G., Kellös, T., Galiba, G. & Koesu, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul., 28, 66-80.
  • 48.Szamrej, I. K. & Czerpak, R. (2004). The effect of sex steroids and corticosteroids on the content of soluble proteins, nucleic acids and reducing sugars in Wolffia arrhiza (L.) Wimm. (Lemnaceae). Pol. J. Environ. Stud., 13 (5), 565-571.
  • 49.Szechyńska-Hebda, M., Skrzypek, E., Dąbrowska, G., Biesaga-Kościelniak, J., Filek, M. & Wędzony, M. (2007). The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiol. Plant., 29, 327-337.
  • 50.Tarchevsky, I. A., Maksyutova, N. N., Yakovleva, V. G. (2001). Effect of jasmonic, salicylic and abscisic acids on [14C] leucine incorporation into proteins of Pea leaves. Biochemistry, 66, 68-71.
  • 51.Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, 307-313.
  • 52.Zimmerman, D. C. & Coudron, C. A. (1979). Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol., 63, 536-541.
  • 53.Żuchowski J. (1999). Vegetable superoxide dismutases. Kosmos, 48, 87-93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.