PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fading out of the trophic cascade at the base of the microbial food web caused by changes in the grazing community in mesocosm experiments

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biomanipulation of consumer populations can have strong top-down impacts on the composition and biomass of lower trophic levels. In this paper, we assess how changes in crustaceans' biomass influence classical grazing and the microbial food web in an oligo-mesohumic, low-pH lake (Mazurian Lake District, Poland). Removal of mesozooplankton from the experimental mesocosms created a gradient of crustacean biomass resulting in the biomass increase of rotifers, phytoplankton and protozooplankton, while autotrophic eukaryotic picoplankton (eu-APP) and bacteria were not affected. The strongest modifications concerned the rotifer biomass and phytoplankton community structure. Our results imply that the trophic cascade generated in the experiment did not extend to bacteria and eu-APP.
Słowa kluczowe
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.Arvola, L. (1999). Trophic interactions. In Limnology of humic waters (pp. 265-279). Leiden: Backhuys Publishers.
  • 2.Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. & Holopaine, A-L. (1999). Phytoplankton. In Limnology of humic waters (pp. 137-171). Leiden: Backhuys Publishers.
  • 3.Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. (1983). The Ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263.
  • 4.Bergström, A.-K., Jansson, M., Drakare, S. & Blomqvist P. (2003). Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biol., 48, 686-877.
  • 5.Bloesch, J. (1988). Mesocosm studies. Hydrobiologia, 159, 221-222.
  • 6.Burns, C. & Schallenberg, M. (2001). Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs of an oligotrophic and eutrophic lake. New Zealand J. Marine Freshwater Res., 35, 695-710.
  • 7.Callieri, C. & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: a review. J. Limnol., 61, 1-14.
  • 8.Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35, 635-639.
  • 9.Dowgiałło, A. (1984). Simplified photometric methods of determination of ammonia and Kjeldahl nitrogen in biological materials. Pol. Arch. Hydrobiol., 31, 317-339.
  • 10.Flynn, K. & Mitra, A. (2009). Building the "perfect beast": modelling mixotrophic plankton. J. Plankton Res., 31, 965-992.
  • 11.Golterman, H. L. & Clymo, R. S. (1978). Methods for physical & chemical analysis of fresh waters (pp. 214). Oxford, Edinburgh, London, Melbourne: IBP Handbook No. 8. Blackwell Scientific Publications.
  • 12.Arvola, L. (1999). Trophic interactions. In Limnology of humic waters (pp. 265-279). Leiden: Backhuys Publishers.
  • 13.Arvola, L., Eloranta, P., Järvinen, M., Keskitalo, J. & Holopaine, A-L. (1999). Phytoplankton. In Limnology of humic waters (pp. 137-171). Leiden: Backhuys Publishers.
  • 14.Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. (1983). The Ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257-263.
  • 15.Bergström, A.-K., Jansson, M., Drakare, S. & Blomqvist P. (2003). Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshwater Biol., 48, 686-877.
  • 16.Bloesch, J. (1988). Mesocosm studies. Hydrobiologia, 159, 221-222.
  • 17.Burns, C. & Schallenberg, M. (2001). Short-term impacts of nutrients, Daphnia, and copepods on microbial food-webs of an oligotrophic and eutrophic lake. New Zealand J. Marine Freshwater Res., 35, 695-710.
  • 18.Callieri, C. & Stockner, J. G. (2002). Freshwater autotrophic picoplankton: a review. J. Limnol., 61, 1-14.
  • 19.Carpenter, S. R., Kitchell, J. F. & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. BioScience, 35, 635-639.
  • 20.Dowgiałło, A. (1984). Simplified photometric methods of determination of ammonia and Kjeldahl nitrogen in biological materials. Pol. Arch. Hydrobiol., 31, 317-339.
  • 21.Flynn, K. & Mitra, A. (2009). Building the "perfect beast": modelling mixotrophic plankton. J. Plankton Res., 31, 965-992.
  • 22.Golterman, H. L. & Clymo, R. S. (1978). Methods for physical & chemical analysis of fresh waters (pp. 214). Oxford, Edinburgh, London, Melbourne: IBP Handbook No. 8. Blackwell Scientific Publications.
  • 23.Horn, H. & Horn, W. (2008). Bottom-up or top-down - How is autotrophic picoplankton mainly controlled? Results of long term investigations from two drinking water reservoirs of different trophic state. Limnologica, 38, 302-312.
  • 24.Jasser, I., Kostrzewska-Szlakowska, I., Ejsmont-Karabin, J., Kalinowska, K. & Węgleńska, T. (2009). Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: the role of microbial communities. Pol. J. Ecol., 57, 423-439.
  • 25.Jones, R. I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biol., 45, 219-226.
  • 26.Jürgens, K. (1994). The impact of Daphnia on microbial food webs - a review. Mar. Microb. Food Webs., 8, 295-324.
  • 27.Jürgens, K. & Jeppesen, E. (2000). The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. J. Plankton Res., 22, 1047-1070.
  • 28.Malinsky-Rushansky, N. & Berman, T. (1991). Picocyanobacteria and bacteria in lake Kinneret. Int. Rev. Gesamten Hydrobiol., 76, 555-564.
  • 29.Marker, A. F. H., Nush, E. A., Rai, H. & Riemann, B. (1980). The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations of the workshop. In Proceedings of the workshop on the measurement of photosynthetic pigments in freshwaters and standardization of methods. Arch. Hydrobiol./Beih. Ergebn. Limnol., 14, 91-106.
  • 30.Mazumder, A. (1994). Patterns of algal biomass in dominant odd- vs. even-link lake ecosystems. Ecology, 75, 1141-1149.
  • 31.Modenutti, B. E., Queimaliños, C. P., Balseiro, E. G. & Reissig, M. (2003). Impact of different zooplankton structures on the microbial food web of an Andean oligotrophic lake. Acta Oecologica, 24 S1, 289-298.
  • 32.Muylaert, K., Zhao, L., Van der Gucht, K., Cousin, S., Declerck, S. & Vyverman, W. (2006). Trophic coupling in the microbial food web of a eutrophic shallow lake (Lake Visvijer, Belgium). Arch. Hydrobiol., 166, 307-324.
  • 33.Pace, M. L. & Funke, E. (1991). Regulation of planktonic microbial communities by nutrients and herbivores. Ecology, 72, 904-914.
  • 34.Persson, L., Andersson, G., Hamrin, S. F. & Johansson, L. (1988). Predator regulation and primary production along the productivity gradient of temperate ecosystems, In Carpenter S. R. (Ed.), Complex interactions in Lake Communities (pp. 45-65). New York: Springer-Verlag.
  • 35.Pomeroy, L. R. (1974). The oceans's food web, changing paradigm. BioScience, 24, 499-504.
  • 36.Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948.
  • 37.Ptacnik, R., Sommer, U., Hansen, T. & Volker, M. (2004). Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol. Oceanogr., 49, 1435-1445.
  • 38.Rojo, C., Rodrigo, M. & Barón-Rodríguez, M. (2007). Dynamic of the planktonic food webs in Colgada Lake (Lagunas de Ruidera Natural Park). Limnetica, 26, 251-264.
  • 39.Ronnenberger, D., Kasprzak, P. & Krienitz L. (1993). Long-term changes in the rotifer fauna after biomanipulation in Haussee (Feldberg, Germany, Magklenburg-Vorpommern) and its relationship to the crustacean and phytoplankton communities. Hydrobiologia, 255/256, 297-304.
  • 40.Sarnelle, O. (1997). Daphnia effects on microzooplankton: comparisons of enclosure and whole-lake responses. Ecology, 78, 913-928.
  • 41.Sommer, U., Sommer, F., Santer, B., Zöllner, E., Jürgens, K., Jamieson, C., Boersma, M. & Gocke, K. (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135, 639-647.
  • 42.Strong, D. R. (1992). Are trophic cascades ale wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747-754.
  • 43.Utermohl, H. (1958). Zur Vervollkommnung der quatitativen Phytoplankton-Methodik. Int. Verein. Theoretische Angew. Limnol., 9, 1-38.
  • 44.Vaqué, D. & Pace, M. L. (1992). Grazing on bacteria by flagellates and cladocerans in lakes of contrasting food web structure. J. Plankton Res., 14, 307-321.
  • 45.Zöllner, E., Santer, B., Boersma, M., Hoppe, H-G. & Jürgens, K. (2003). Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol., 48, 2174-2193
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.