PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multiplicative Transition Systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with algebras whose elements can be used to represent runs of a system from a state to a state. These algebras, called multiplicative transition systems, are categories with respect to a partial binary operation called composition. They can be characterized by axioms such that their elements and operations can be represented by partially ordered multisets of a certain type and operations on such multisets. The representation can be obtained without assuming a discrete nature of represented elements. In particular, it remains valid for systems with infinitely divisible elements, and thus also for systems with elements which can represent continuous and partially continuous runs.
Wydawca
Rocznik
Strony
201--222
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
Bibliografia
  • [1] Ehrenfeucht, A., Rozenberg, G., Partial 2-structures, Acta Informatica 27 (1990) 315-368
  • [2] Ehrig, H., Kreowski, H. -J., Parallelism of Manipulations in Multidimensional Information Structures, In A. Mazurkiewicz (Ed.): Proc. of MFCS'76, Springer LNCS 45 (1976) 284-293
  • [3] Lynch, N., Segala, R., Vaandrager, F., Hybrid I/O Automata, Information and Computation 185(1), 2003,105-157
  • [4] Mazurkiewicz, A., Basic Notions of Trace Theory, in J. W. de Bakker,W. P. de Roever and G. Rozenberg (Eds.): Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Springer LNCS 354 (1988) 285-363
  • [5] Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag New York Heidelberg Berlin 1971
  • [6] Nielsen, M., Rozenberg, G., Thiagarajan, P. S., Elementary Transition Systems, Theoretical Computer Science (1992) 3-33
  • [7] Petri, C. A., Introduction to General Net Theory, in W. Brauer (Ed.): Net Theory and Applications, Springer LNCS 84 (1980) 1-19
  • [8] Rozenberg, G., Thiagarajan, P. S., Petri Nets: Basic Notions, Structure, Behaviour, in J. W. de Bakker,W. P. de Roever and G. Rozenberg (Eds.): Current Trends in Concurrency, Springer LNCS 224 (1986) 585-668
  • [9] Winkowski, J., An Algebraic Characterization of Independence of Petri Net Processes, Information Processing Letters 88 (2003), 73-81
  • [10] Winkowski, J., An Algebraic Framework for Defining Behaviours of Concurrent Systems. Part 1: The Constructive Presentation, Fundamenta Informaticae 97 (2009), 235-273
  • [11] Winkowski, J., An Algebraic Framework for Defining Behaviours of Concurrent Systems. Part 2: The Axiomatic Presentation, Fundamenta Informaticae 97 (2009), 439-470
  • [12] Winskel, G., Nielsen, M., Models for Concurrency, in S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum (Eds.): Handbook of Logic in Computer Science 4 (1995), 1-148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.