PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough Sets, Coverings and Incomplete Information

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rough sets are often induced by descriptions of objects based on the precise observations of an insufficient number of attributes. In this paper, we study generalizations of rough sets to incomplete information systems, involving imprecise observations of attributes. The precise role of covering-based approximations of sets that extend the standard rough sets in the presence of incomplete information about attribute values is described. In this setting, a covering encodes a set of possible partitions of the set of objects. A natural semantics of two possible generalisations of rough sets to the case of a covering (or a non transitive tolerance relation) is laid bare. It is shown that uncertainty due to granularity of the description of sets by attributes and uncertainty due to incomplete information are superposed, whereby upper and lower approximations themselves (in Pawlak’s sense) become ill-known, each being bracketed by two nested sets. The notion of measure of accuracy is extended to the incomplete information setting, and the generalization of this construct to fuzzy attribute mappings is outlined.
Słowa kluczowe
Wydawca
Rocznik
Strony
223--247
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
Bibliografia
  • [1] C. Baudrit, I. Couso, D. Dubois, Joint propagation of probability and possibility in risk analysis: towards a formal framework, International Journal of Approximate Reasoning, 45, 82-105 (2007).
  • [2] Z. Bonikowski, E. Bryniarski, U. Wybraniec-Skardowska, Extensions and intentions in the rough set theory, Information Sciences, 107, 149-167 (1998).
  • [3] I. Couso, P. Gil, S. Montes, The necessity of the strong _-cuts of a fuzzy set, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9, 249-262 (2001).
  • [4] I. Couso, L. Sánchez, Higher order models for fuzzy random variables, Fuzzy Sets and Systems, 159, 237-258 (2008).
  • [5] M. De Cock, C. Cornelis, E.E. Kerre, Fuzzy rough sets, the forgotten connection, IEEE trans. Fuzzy Systems, 15: 121-129 (2007).
  • [6] T. Deng, Y. Chen, W. Xu and Q. Dai, A novel approach to fuzzy rough sets based on a fuzzy covering, Information Sciences, 177: 2308-2326 (2007).
  • [7] A.P. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, 38 (1967), pp. 325-339.
  • [8] D. Dubois, H. Prade, Twofold fuzzy sets and rough sets - Some issues in knowledge representation, Fuzzy Sets and Systems, 23, 3-18 (1987).
  • [9] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 191-209 (1990).
  • [10] D. Dubois, H. Prade, When upper probabilities are possibility measures, Fuzzy Sets and Systems, 49, 65-74 (1992).
  • [11] R. Fagin, J. Y. Halpern, Uncertainty, belief, and probability. Computational Intelligence 7: 160-173 (1991).
  • [12] B. Ganter, R. Wille, Formal Concept Analysis, Springer-Verlag, 1999
  • [13] J. W. Grzymala-Busse, On the Unknown Attribute Values in Learning from Examples. Methodologies for Intelligent Systems (ISMIS 1991), Lecture Notes in Computer Science, vol. 542, Springer, Berlin, 1991, pp 368-377.
  • [14] R. Kruse, K.D. Meyer, Statistics with Vague Data, Reidel, Dordrecht, 1987.
  • [15] M. Kryszkiewicz, Rough set approach to incomplete information systems, Information Sciences, 112, 39-49 (1998).
  • [16] H. Kwakernaak, Fuzzy random variables I, II, Information Sciences 15 (1978) 129 17 (1979) 253278.
  • [17] W. Lipski On databases with incomplete information, Journal of the ACM, 28: 41-70 (1981).
  • [18] M. Magnani, Rough Set Theory for Knowlege Discovery in Data Bases, Technical Report, 2003.
  • [19] M. Nakata, H. Sakai, Lower and Upper Approximations in Data Tables Containing Possibilistic Information, J.F. Peters et al. (eds), Transactions on Rough Sets VII, LNCS 4400, 170-189 (2007).
  • [20] E. Orlowska, Z. Pawlak: Representation of Nondeterministic Information. Theoretical Computer Sciences, 29: 27-39 (1984).
  • [21] Z. Pawlak, Rough classification, International Journal of Man-Machine Studies 20, 469-483 (1984).
  • [22] Z. Pawlak, Rough probability, Bulletin of Polish Academy of Sciences. Mathematics 32, 607-615 (1984).
  • [23] Z. Pawlak, Rough Sets, Kluwer Academic Publisher, Dordrecht, 1991.
  • [24] J.A. Pomykala, Approximation, Similarity and Rough Constructions, ILLC Pre-publication Series for Computational and Complexity Theory, CT-93-07, University of Amsterdam.
  • [25] A. M. Radzikowska, E. E. Kerre A comparative study of fuzzy rough sets Fuzzy Sets and Systems,126: 137-155 (2002).
  • [26] P. Samanta, M. K. Chakraborty: Covering Based Approaches to Rough Sets and Implication Lattices. In : Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009): Lecture Notes in Computer Science, vol. 5908, Springer, 2009, pp. 127-134.
  • [27] G. Shafer (1976) A mathematical theory of evidence. Princeton university press Princeton, NJ
  • [28] Y. Y. Yao: Interval-Set Algebra for Qualitative Knowledge Representation. Int. Conf. Computing and Information (1993) 370-374
  • [29] Y.Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences, 111, 239-259, 1998.
  • [30] Y.Y. Yao. and P.J. Lingras, Interpretations of belief functions in the theory of rough sets, Information Sciences, 104, 81-106 (1998).
  • [31] Y.Y. Yao, On generalizing rough set theory, In : Rough Sets, Fuzzy Sets, DataMining, and Granular Computing, Wang, G. Liu, Q. Yao, Y. Skowron, A. (Eds.), Lecture Notes in Computer Science, Springer, Vol. 2639, 44-51 (2003).
  • [32] W.H. Xu andW.X. Zhang,Measuring roughness of generalized rough sets induced by a covering, Fuzzy Sets and Systems, 158, 2443 - 2455 (2007).
  • [33] L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 177-200 (1971).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.