PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Analysis of Finite Idempotent Relations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We use the technique of interactive theoremproving to develop the theory and an enumeration technique for finite idempotent relations. Starting from a short mathematical characterization of finite idempotents defined and proved in Isabelle/HOL, we derive first an iterative procedure to generate all instances of idempotents over a finite set. From there, we develop a more precise theoretical characterization giving rise to an efficient predicate that can be executed in the programming language ML. Idempotent relations represent a very basic, general mathematical concept but the steps taken to develop their theory with the help of Isabelle/HOL are representative for developing algorithms from a mathematical specification
Rocznik
Strony
43--65
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
Bibliografia
  • [1] G. Brinkmann and B. D.McKay Posets on up to 16 points. Order 19 (2002); no. 2, 147-179.MR 2003e:05002
  • [2] J. Burghardt, F. Kammüller and J. W. Sanders. On the Antisymmetry of Galois Embeddings. Information Processing Letters, 79:2, Elsevier, June 2001.
  • [3] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups, volume 1. Mathematical Surveys, number 7. American Mathematical Society. 1961.
  • [4] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, JohnWiley, 1966.
  • [5] R. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second Edition. Cambridge University Press, 2002.
  • [6] N. Dunford and J. T. Schwartz. Linear Operators. Part I: General Theory. John Wiley, 1958.
  • [7] G. Engels et. al. Quasar Enterprise - Anwendungslandschaften service-orientiert gestalten. d-punkt.verlag, 2009.
  • [8] F. Kammüller. http://www.swt.cs.tu-berlin.de/∼flokam.
  • [9] He Jifeng, C. A. R. Hoare, J. W. Sanders Data Refinement Refined (resume). In ESOP'86, pages 187-196. Volume 213 of LNCS, Springer, 1986.
  • [10] F. Kammüller. Interactive Theorem Proving in Software Engineering. (Habilitationsschrift), VDM Müller, 2007.
  • [11] F. Kammüller and J. W. Sanders. Idempotent Relations in Isabelle/HOL. In First International Colloquium on Theoretical Aspects of Computing. Vol. 3407 LNCS, Springer, 2005.
  • [12] F. Kammüller,M. Wenzel, and L. C. Paulson. Locales - a Sectioning Concept for Isabelle. Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs'99. Vol. 1690 LNCS, Springer, 1999.
  • [13] L. C. Paulson. Isabelle: the Next 700 Theorem Provers. In: P. Odifreddi (editor), Logic and Computer Science, pages 361-386. Academic Press, 1990.
  • [14] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS, 828, 1994.
  • [15] G. Pfeiffer. Counting Transitive Relations. Journal of Integer Sequences, 7:3, 2004.
  • [16] M. Sch¨onert et al. GAP: Groups, Algorithms and Programming. RWTH Aachen, http://www.gapsystem.org
  • [17] N. J. A. Sloane The on-line encyclopedia of integer sequences. Published electronically AT http://www.research.att.com/∼njas/sequences, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.