Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We use the technique of interactive theoremproving to develop the theory and an enumeration technique for finite idempotent relations. Starting from a short mathematical characterization of finite idempotents defined and proved in Isabelle/HOL, we derive first an iterative procedure to generate all instances of idempotents over a finite set. From there, we develop a more precise theoretical characterization giving rise to an efficient predicate that can be executed in the programming language ML. Idempotent relations represent a very basic, general mathematical concept but the steps taken to develop their theory with the help of Isabelle/HOL are representative for developing algorithms from a mathematical specification
Wydawca
Czasopismo
Rocznik
Tom
Strony
43--65
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
- Middlesex University, The Borroughs, NW4 4BT, London UK, flokam@cs.tu-berlin.de
Bibliografia
- [1] G. Brinkmann and B. D.McKay Posets on up to 16 points. Order 19 (2002); no. 2, 147-179.MR 2003e:05002
- [2] J. Burghardt, F. Kammüller and J. W. Sanders. On the Antisymmetry of Galois Embeddings. Information Processing Letters, 79:2, Elsevier, June 2001.
- [3] A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups, volume 1. Mathematical Surveys, number 7. American Mathematical Society. 1961.
- [4] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, JohnWiley, 1966.
- [5] R. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second Edition. Cambridge University Press, 2002.
- [6] N. Dunford and J. T. Schwartz. Linear Operators. Part I: General Theory. John Wiley, 1958.
- [7] G. Engels et. al. Quasar Enterprise - Anwendungslandschaften service-orientiert gestalten. d-punkt.verlag, 2009.
- [8] F. Kammüller. http://www.swt.cs.tu-berlin.de/∼flokam.
- [9] He Jifeng, C. A. R. Hoare, J. W. Sanders Data Refinement Refined (resume). In ESOP'86, pages 187-196. Volume 213 of LNCS, Springer, 1986.
- [10] F. Kammüller. Interactive Theorem Proving in Software Engineering. (Habilitationsschrift), VDM Müller, 2007.
- [11] F. Kammüller and J. W. Sanders. Idempotent Relations in Isabelle/HOL. In First International Colloquium on Theoretical Aspects of Computing. Vol. 3407 LNCS, Springer, 2005.
- [12] F. Kammüller,M. Wenzel, and L. C. Paulson. Locales - a Sectioning Concept for Isabelle. Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs'99. Vol. 1690 LNCS, Springer, 1999.
- [13] L. C. Paulson. Isabelle: the Next 700 Theorem Provers. In: P. Odifreddi (editor), Logic and Computer Science, pages 361-386. Academic Press, 1990.
- [14] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS, 828, 1994.
- [15] G. Pfeiffer. Counting Transitive Relations. Journal of Integer Sequences, 7:3, 2004.
- [16] M. Sch¨onert et al. GAP: Groups, Algorithms and Programming. RWTH Aachen, http://www.gapsystem.org
- [17] N. J. A. Sloane The on-line encyclopedia of integer sequences. Published electronically AT http://www.research.att.com/∼njas/sequences, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0018-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.