PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wiązanie wodorowe i inne oddziaływania typu kwas Lewisa-zasada Lewisa

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The hydrogen bond and the other Lewis acid-Lewis base interactions
Języki publikacji
PL
Abstrakty
EN
Hydrogen bond is analyzed very often since its importance in numerous chemical, physical and biological processes is very well known. It covers the broad range of various interactions; sometimes this is the subject of discussions and polemics if some of them may be classified as hydrogen bonds. This is because there are numerous definitions of hydrogen bond interaction, often they are hardly accepted since they are not univocal. For example one can mention different types of the proton acceptors for hydrogen bonds; one center electronegative atoms, multi-center acceptors such as đ-electrons or even ó-electrons. There are the other interactions which play the key role in various processes and phenomena. All are often named as no-covalent interactions but the other term, Lewis acid–Lewis base interactions seems to be more accurate. One can mention halogen bond, hydride bond or dihydrogen bond. These interactions may be treated as counterparts or competitors of hydrogen bond. The common characteristic for them, including hydrogen bond, is the electron charge transfer from the Lewis base to the Lewis acid. It was found that the amount of this transfer corresponds roughly to the strength of the interaction. In recent years the ó-hole concept was introduced and developed and it was applied to the Lewis base–Lewis acid interactions. According to this concept the atomic centers are characterized by the presence of the regions of positive and negative electrostatic potentials; very often both regions are detected even for atoms which are commonly known as electronegative ones. In such a way halogen atoms, especially if connected by covalent bond with carbon, may act as Lewis acids and also as Lewis bases. In the first case the halogen bond is formed, recently extensively studied. In this review the characteristics of different Lewis base–Lewis acid interactions are given as well as their common features are presented.
Rocznik
Strony
975--1001
Opis fizyczny
Bibliogr. 73 poz., tab., wykr.
Twórcy
  • Faculty of Chemistry, University of the Basque Country UPV/EHU and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain, s.grabowski@ikerbasque.org
Bibliografia
  • [1] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.
  • [2] G. Zundel, Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology, [w:] Adv. Chem. Phys. Eds. I. Prigogine, S.A. Rice, J. Wiley, Vol. 111, 2000.
  • [3] Hydrogen-Transfer Reactions, Eds. J.T. Hynes, J.P. Klinman, H.-H. Limbach, R.L. Schowen, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
  • [4] G.R. Desiraju, Crystal Engineering. The Design of Organic Solids, Elsevier, Amsterdam, 1989.
  • [5] G.A. Jeffrey, W.Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1991.
  • [6] J.-M. Lehn, Angew. Chem. Int. Ed. Engl., 1990, 29, 1304.
  • [7] J.-M. Lehn, Supramolecular Chemistry, Verlag-Chemie, Weinheim, 1995.
  • [8] G.C. Pimentel, A.L. McClellan, The Hydrogen Bond, W.H. Freeman and Company, San Francisco and London, 1960.
  • [9] S. Scheiner, Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, New York, 1997.
  • [10] Hydrogen Bonding - New Insights, Ed. S.J. Grabowski, Vol. 3 of the series: Challenges and Advances in Computational Chemistry and Physics, Ed. J. Leszczynski, Springer, 2006.
  • [11] P. Hobza, K. Müller-Dethlefs, Non-Covalent Interactions. Theory and Experiment. RSC Publishing, Cambridge, 2010.
  • [12] P. Metrangolo, G. Resnati, Chem. Eur., J. 2001, 7, 2511.
  • [13] P.A. Kollman, J.F. Liebman, L.C. Allen, J. Am. Chem. Soc., 1970, 92, 1142.
  • [14] S.J. Grabowski, W.A. Sokalski, J. Leszczyński, Chem. Phys. Lett., 2006, 422, 334.
  • [15] P. Lipkowski, S.J. Grabowski, J. Leszczyński, J. Phys. Chem. A, 2006, 110, 10296.
  • [16] A.M. Pendás, M.A. Blanco, E. Francisco, J. Chem. Phys., 2006, 125, 184112.
  • [17] K. Morokuma, K. Kitaura, [w:] Molecular Interactions, Eds. H.Ratajczak, W.J. Orville-Thomas, Vol. 1, 21-66, John Wiley and Sons Ltd. New York 1980.
  • [18] W.A. Sokalski, S. Roszak, K. Pecul, Chem. Phys. Lett., 1988, 153, 153.
  • [19] W.A. Sokalski, S. Roszak J. Mol. Struct. (THEOCHEM), 1991, 234, 387.
  • [20] J.J. Novoa, M.-H. Whangbo, J.M. Williams, J. Chem. Phys., 1991, 94, 4835.
  • [21] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem.Rev., 2005, 105, 3513.
  • [22] R.F.W. Bader, Atoms in Molecules, A Quantum Theory; Oxford University Press, Oxford, 1990.
  • [23] Quantum Theory of Atoms in Molecules: Recent Progress in Theory and Application, Eds. C. Matta, R.J. Boyd, Wiley-VCH, Weinheim, 2007.
  • [24] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
  • [25] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc., 2000, 122, 11154.
  • [26] U. Koch, P.L.A. Popelier, J. Phys. Chem., 1995, 99, 9747.
  • [27] P. Popelier, Atoms in Molecules. An Introduction, Pearson Education Limited, Prentice Hall, 2000.
  • [28] L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 3rd edition, 1960.
  • [29] D.J. Suttor, J. Chem. Soc., 1963, 1105.
  • [30] R. Taylor, O. Kennard, J. Am. Chem. Soc., 1982, 104, 5063.
  • [31] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press Inc., New York, 1999.
  • [32] M. Goswami, E. Arunan, Phys. Chem. Chem. Phys., 2009, 11, 8974.
  • [33] M. Nishio, M. Hirota, Y. Umezawa, The CH/π Interaction, Evidence, Nature, and Consequences, Wiley-VCH, New York, 1998.
  • [34] S.J. Grabowski, J.M. Ugalde, J. Phys. Chem. A, 2010, 114, 7223.
  • [35] S.J. Grabowski, J. Phys. Chem. A, 2007, 111, 3387.
  • [36] S.J. Grabowski, W.A. Sokalski, J. Leszczyński, J. Phys. Chem. A, 2004, 108, 5823.
  • [37] G.E. Douberly, A.M. Ricks, B.W. Ticknor, W.C. McKee, P.v.R. Schleyer, M.A. Duncan, J. Phys. Chem. A, 2008, 112, 1897.
  • [38] S.J. Grabowski, J. Phys. Chem. A, 2007, 111, 13537.
  • [39] R. Custelcean, J.E. Jackson, Chem. Rev., 2001, 101, 1963.
  • [40] J. Wessel, J.C. Lee, Jr., E. Peris, G.P.A. Yap, J.B. Fortin, J.S. Ricci, G. Sini, A. Albinati, T.F. Koetzle, O. Eisenstein, A.L. Rheingold, R.H. Crabtree, Angew. Chem. Int. Ed. Engl., 1995, 34, 2507.
  • [41] N.V. Belkova, E.S. Shubina, E.I. Gutsul, L.M. Epstein, I.L. Eremenko, S.E. Nefedov, J. Organomet. Chem., 2000, 610, 58.
  • [42] K.N. Robertson, O. Knop, T.S. Cameron, Can. J. Chem., 2003, 81, 727.
  • [43] T.B. Richardson, S. de Gala, R.H. Crabtree, P.E.M. Siegbahn, J. Am. Chem. Soc., 1995, 117, 12875.
  • [44] H. Cybulski, M. Pecul, J. Sadlej, T. Helgaker, J. Chem. Phys., 2003, 119, 5094.
  • [45] S.J. Grabowski, J. Phys. Chem. A, 2000, 104, 5551.
  • [46] G. Orlova, S. Scheiner, J. Phys. Chem., 1998, 102, 4813.
  • [47] G.R. Desiraju, Acc. Chem. Res., 2002, 35, 565.
  • [48] S.J. Grabowski, W.A. Sokalski, E. Dyguda, J. Leszczynski, J. Phys. Chem. B, 2006, 110, 6444.
  • [49] S.J. Grabowski, W.A. Sokalski, J. Leszczyński, Chem. Phys., 2007, 337, 68.
  • [50] S.J. Grabowski, W.A. Sokalski, J. Leszczyński, J. Phys. Chem. A, 2005, 109, 4331.
  • [51] A.D. Becke, K.E. Edgecombe, J. Chem. Phys., 1990, 92, 5397.
  • [52] B. Silvi, A. Savin, Nature, 1994, 371, 683.
  • [53] F. Fuster, B. Silvi, S. Berski, Z. Latajka, J. Mol. Struct., 2000, 555, 75.
  • [54] S. Berski, J. Lundell, Z. Latajka, J. Mol. Struct., 2000, 552, 223.
  • [55] I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A, 1997, 101, 4236.
  • [56] P. Hobza, Z. Havlas, Chem. Rev., 2000, 100, 4253.
  • [57] F.A. Cotton, J.H. Matonic, C.A. Murillo, J. Am. Chem. Soc., 1998, 120, 6047.
  • [58] H.A. Bent, Chem.Rev., 1968, 68, 587.
  • [59] F. Zordan, L. Brammer, P. Sherwood, J. Am. Chem. Soc., 2005, 127, 5979.
  • [60] S.C. Nyburg, W. Wong-Ng, Proc. Royal Soc. London A, 1979, 367, 29.
  • [61] P. Politzer, P. Lane, M.C. Concha, Y. Ma, J.S. Murray, J. Mol. Mod., 2007, 13, 305.
  • [62] P. Politzer, J.S. Murray, T. Clark, Phys. Chem. Chem. Phys., 2010, 12, 7748.
  • [63] J.S. Murray, K.E. Riley, P. Politzer, T. Clark, Aust. J. Chem., 2010, 63, 1598.
  • [64] E. Bilewicz, A.Rybarczyk-Pirek, A.T. Dubis, S.J. Grabowski, J. Mol. Struct., 2007, 829, 208.
  • [65] M. Palusiak, J. Mol. Struct (THEOCHEM ), 2010, 945, 89.
  • [66] Y.-X. Lu, J.-W. Zou, Y.-H. Wang, Y.-J. Jiang, Q.-S. Yu, J. Phys. Chem. A, 2007, 111, 10781.
  • [67] M. Formigue, P. Batail, Chem. Rev., 2004, 104, 5379.
  • [68] F.H. Allen, J.E. Davies, J.E. Galloy, J.J. Johnson, O. Kennard, C.F. Macrave, E.M. Mitchel, J.M. Smith, D.G. Watson, J. Chem. Inf. Comput. Sci., 1991, 31, 187.
  • [69] J.S. Murray, P. Lane, P. Politzer, J. Mol. Mod., 2009, 15, 723.
  • [70] P. Politzer, J.S. Murray, M.C. Concha, J. Mol. Mod., 2008, 14, 659.
  • [71] S. Scheiner, Chem. Phys. Lett., 2011, 514, 32.
  • [72] M. Solimannejad, M. Gharabaghi, S. Scheiner, J. Chem. Phys., 2011, 134, 024312.
  • [73] U. Adhikari, S. Scheiner, Chem. Phys. Lett., 2011, 514, 36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.