Identyfikatory
Warianty tytułu
Strustural consequences of the h-bonding
Języki publikacji
Abstrakty
Hydrogen bonding belongs to the most important chemical interactions in life and geochemical processes as well as in technologies, that is documented in many review articles [1-10], monographs [11-17] and numerous publications. Figure 1 presents how "popular" are studies concerning hydrogen bonds (the term H-bond/bonding/bonded in a title, key-words or in abstract) in the last decade. First information about H-bond formation appeared at the end of XIX and a few other at beginning of XX centuries [19-24]. Most common definition of H-bonding stems from Pauling [27], whereas the newest IUPAC definition was published very recently [26]. Most frequently H-bonding is experimentally described by geometry parameters [28, 32] - results of X-ray and neutron diffraction measurements, but NMR and IR/Raman spectroscopies are also in frequent use. Characteristic of interactions by H-bonding is usually discussed in terms of energies [29-31], with use of various quantum chemical theories [54-57] and applications of various models as AIM [35, 41, 42, 45-48] and NBO [43, 44] which allowed to formulate detailed criteria for H-bond characteristics [35, 48]. H-bonds are classified as strong, mostly covalent in nature [7, 29, 34], partly covalent of medium strength [35] and weak ones, usually non-covalent [7, 29, 34, 35]. Theoretical studies of H-bonding mainly concern equilibrium systems, however simulation of H-bonded complexes with controlled and gradually changing strength of interactions [61-71] are also performed. The latter is main source of data referring to effect of H-bonding on structural properties: changes in the region of interactions, short and long-distance consequences of H-bonding. Application of the model [61] based on approaching hydrofluoric acid to the basic center of a molecule and fluoride to the acidic one, (Schemes 2 and 3) allows to study changes in molecular structure of para-substituted derivatives of phenol and phenolate [62, 64] in function of dB…H, or other geometric parameter of H-bond strength (Fig. 2). It is also shown that CO bond lengths in these complexes is monotonically related to H-bond formation energy and deformation energy due to H-bond formation [65]. Alike studies carried out for para-substituted derivatives of aniline and its protonated and deprotonated forms [77, 78, 81] give similar picture (Fig. 3). AIM studies of anilines [77, 78] lead to an excellent dependence of logarithm of electron density in the bond critical point and geometric parameter of H-bond strength, dB…H presented in Figure 4. Substituents and H-bond formation affect dramatically geometry of amine group [66] in H-bonded complexes of aniline as shown by changes of pyramidalization of bonds in amine group (Fig. 5). Some short- and long-distance structural consequences of H-bonding are shown by means of changes in ipso angle (for amine group) in the ring and ipso-ortho CC bond lengths (Fig. 6). Moreover, the mutual interrelations are in line with the Bent-Walsh rule [84, 86]. Changes of the strength of H-bonds in complexes of p-substituted aniline and its protonated and deprotonated derivative are dramatically reflected by aromaticity of the ring66 estimated by use of HOMA index [87, 88] (Fig. 7), where strength of H-bonding is approximated by CN bond lengths. Scheme 4 presents application of the SESE [91] (Substituent Effect Stabilization Energy) for description in an energetic scale joint substituent and H-bond formation effects.
Wydawca
Czasopismo
Rocznik
Tom
Strony
953--974
Opis fizyczny
Bibliogr. 92 poz., wykr.
Twórcy
autor
autor
- Wydział Chemii Uniwersytetu Warszawskiego, ul. Pasteura 1, 02-093 Warszawa, tmktyg@chem.uw.edu.pl
Bibliografia
- [1] P.A. Kollman, L.C. Allen, Chem. Rev., 1972, 72, 283.
- [2] B. Chen, I. Alkorta, I. Rozas, J. Elguero, Chem. Soc. Rev., 1998, 27, 163.
- [3] P. Hobza, Z. Havlas, Chem. Rev., 2000, 100, 4253.
- [4] R. Custelcean, J. Jackson, Chem. Rev., 2001, 101, 1963.
- [5] A. Katrusiak, Crystall. Rev., 2003, 9, 91.
- [6] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 2005, 105, 3513.
- [7] S.J. Grabowski, Annu. Rep. Chem., Sec. C, 2006, 102, 131.
- [8] H. Szatylowicz, J. Phys. Org. Chem., 2008, 21, 897.
- [9] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
- [10] artykuły [w:] Hydrogen Bonding - New Insights, Ed. S.J. Grabowski, Springer, Dordrecht, 2006.
- [11] G.C. Pimentel, A.L. McClellan, The Hydrogen Bond, WH Freeman and Co., San Francisco, 1960.
- [12] The Hydrogen Bond, Recent Developments in Theory and Experiments, Eds: P. Schuster, G. Zundel, C. Sandorfy, North-Holland Publishing Company, Amsterdam, 1976.
- [13] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1990.
- [14] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.
- [15] S. Scheiner, Hydrogen Bonding, A Theoretical Perspective, Oxford University Press, Oxford, 1997.
- [16] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press, New York, 1999.
- [17] G. Gilli, P. Gilli, The Nature of the Hydrogen Bond - Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, Oxford, 2009.
- [18] ISI Web of Science, 2011.
- [19] W. Nernst, Z. Phys. Chem. (Leipzig), 1891, 8, 110.
- [20] A. Werner, Liebigs Ann. Chem., 1902, 322, 261.
- [21] T.S. Moore, T.F. Winmill, J. Chem. Soc., Trans., 1912, 101, 1635.
- [22] W.M. Latimer, W.H. Rodebush, J. Am. Chem. Soc., 1920, 42, 1419.
- [23] M.L. Huggins, Undergraduate Thesis, University of California, 1919.
- [24] M.L. Huggins, J. Org. Chem., 1936, 1, 407.
- [25] E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem., 2011, 83, 1619.
- [26] E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem., 2011, 83, 1637.
- [27] C.L. Pauling, Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., Cornell University Press, Ithaca, NY, 1960, s. 449-504, pierwsze wydanie w 1939.
- [28] S.J. Grabowski, T.M. Krygowski, Tetrahedron, 1998, 54, 5683.
- [29] G.R. Desiraju, Acc. Chem. Res., 2002, 35, 565.
- [30] K. Biradha, Cryst. Eng. Comm., 2003, 5, 374.
- [31] M. Nishio, Cryst. Eng. Comm., 2004, 6, 130.
- [32] F.H. Allen, Acta Crystallogr., Sec. B: Struct. Sci., 2002, 58, 380.
- [33] G. Gilli, P. Gilli, J. Mol. Struct., 2000, 552, 1.
- [34] R. Parthasarathi, V. Subramanian, N. Santhyamurthy, J. Phys. Chem. A, 2006, 110, 3349.
- [35] S.J. Grabowski, W.A. Sokalski, E. Dyguda, J. Leszczynski, J. Phys. Chem. B, 2006, 110, 6444.
- [36] T. Dziembowska, B. Szczodrowska, T.M. Krygowski, S.J. Grabowski, J. Phys. Org. Chem., 1994, 7, 142.
- [37] D. Ekonomiuk, M. Kiełbasiński, A. Koliński, Acta Biochim. Polonica, 2005, 52, 741.
- [38] M. Terazima, Phys. Chem. Chem. Phys., 2006, 8, 545.
- [39] B. Furtig, J. Buck, V. Manoharan, W. Bermal, A. Jaschke, P. Wenter, S. Pitsch, H. Schwalbe, Biopolymers, 2007, 86, 360.
- [40] S. Kitagawa, K. Uemura, Chem. Soc. Rev., 2005, 34, 109.
- [41] R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, UK, 1990.
- [42] P.L.A. Popelier, Atoms in Molecules - An Introduction, Pearson Education, Harlow, 2000.
- [43] Tłumaczenie terminu zaczerpnięte z pracy: P.M. Wojciechowski, Wiad. Chem., 2005, 59, 193.
- [44] F. Weinhold, C.R. Landis, Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press: Cambridge, 2005.
- [45] T.S. Koritsanszky, F. Coppens, Chem. Rev., 2001, 101, 1583.
- [46] P.R. Mallinson, G.T. Smith, C.C. Wilson, E. Grech, K. Woźniak, J. Am. Chem. Soc., 2003, 125, 4259.
- [47] I.S. Konovalova, Y.V. Nelyubina, K.A. Lyssenko, B.V. Paponov, O.V. Shishkin, J. Phys. Chem. A, 2011, 115, 8550.
- [48] U. Koch, P. Popelier, J. Phys. Chem., 1995, 99, 9747.
- [49] K. Müller-Dethlefs, P. Hobza, Chem. Rev., 2000, 100, 143.
- [50] I. Rozas, Phys. Chem. Chem. Phys., 2007, 9, 2782.
- [51] L. Piela, Idee Chemii Kwantowej, PWN S.A., Warszawa, 2003.
- [52] W. Kołos, J. Sadlej, Atom i Cząsteczka, Wydanie drugie, WNT, Warszawa, 2007.
- [53] C. Moller, M.S. Plesset, Phys. Rev., 1934, 46, 618.
- [54] R. Krishnan, J.A. Pople, Int. J. Quantum Chem., 1978, 14, 91.
- [55] A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
- [56] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
- [57] Y. Zhao, D.G. Truhlar, Acc. Chem. Res., 2008, 41, 157.
- [58] M.J. Calhorta, Chem. Commun., 2000, 801.
- [59] J. Ireta, J. Neugebauer, M. Scheffler, J. Phys. Chem A, 2004, 108, 5692.
- [60] M. Ziółkowski, S.J. Grabowski, J. Leszczyński, J. Phys. Chem. A, 2006, 110, 6514.
- [61] T.M. Krygowski, J.E. Zachara, H. Szatyłowicz, J. Phys. Org. Chem., 2005, 18, 110.
- [62] T.M. Krygowski, J.E. Zachara, H. Szatyłowicz, J. Org. Chem., 2004, 69, 7038.
- [63] T.M. Krygowski, H. Szatyłowicz, J.E. Zachara, J. Chem. Inf. Comput, Sci., 2004, 44, 2077.
- [64] T.M. Krygowski, H. Szatyłowicz, J.E. Zachara, J. Chem. Inf. Model., 2005, 45, 652.
- [65] T.M. Krygowski, H. Szatyłowicz, J. Phys. Chem. A, 2006, 110, 7232.
- [66] H. Szatyłowicz, T.M. Krygowski, P. Hobza, J. Phys. Chem. A, 2007, 111, 170.
- [67] H. Szatyłowicz, T.M. Krygowski, J. Mol. Struct., 2007, 844, 200.
- [68] E. Kwiatkowska, I. Majerz, A. Koll, Chem. Phys. Lett., 2004, 398, 130.
- [69] I. Majerz, E. Kwiatkowska, A. Koll, J. Phys. Org. Chem., 2005, 18, 833.
- [70] I. Majerz, E. Kwiatkowska, A. Koll, J. Mol. Struc., 2007, 831, 106.
- [71] S. Scheiner, T. Kar, J. Am. Chem. Soc., 1995, 117, 6970.
- [72] S.F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.
- [73] C. Fonseca Guerra, T. van der Wijst, F.M. Bickelhaupt, Chem. Eur. J., 2006, 12, 3032.
- [74] E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.
- [75] M.S. Gordon, J.H. Jensen, Acc. Chem. Res., 1996, 29, 536.
- [76] L.C. Remer, J.H. Jensen, J. Phys. Chem. A, 2000, 104, 9266.
- [77] H. Szatyłowicz, T.M. Krygowski, J.J. Panek, A. Jezierska, J. Phys. Chem. A, 2008, 112, 9895.
- [78] I. Alkorta, J. Elguero, J. Phys. Chem. A, 1999, 103, 272.
- [79] B. Jeziorski, R. Moszyński, K. Szalewicz, Chem. Rev., 1994, 94, 1887.
- [80] G. Gilli, F. Bellucci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc., 1989, 111, 1023.
- [81] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 1994, 116, 909.
- [82] H. Szatyłowicz, T.M. Krygowski, Polish J. Chem., 2004, 78, 1719.
- [83] H. Szatyłowicz, T.M. Krygowski, J.E. Zachara-Horeglad, J. Chem. Inf. Model., 2007, 47, 875.
- [84] A.D. Walsh, Discuss. Faraday Soc., 1947, 2, 18.
- [85] H.A. Bent, Chem. Rev., 1961, 61, 275.
- [86] T.M. Krygowski, H. Szatyłowicz, Trends Org. Chem., 2006, 11, 37.
- [87] J. Kruszewski, T.M. Krygowski, Tetrahedron Lett., 1972, 3839.
- [88] T.M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70.
- [89] P.v.R. Schleyer, M. Manoharan, Z-X. Wang, B. Kiran, H. Jiao, R. Puchta, N.J.R.v.E. Hommes, Org. Lett., 2001, 3, 2465.
- [90] C. Corminboeuf, T. Heine, G. Seifert, P.v.R. Schleyer, J. Weber, Phys. Chem. Chem. Phys., 2004, 6, 273.
- [91] A. Pross, L. Radom, R.W. Taft, J. Org. Chem., 1980, 45, 818.
- [92] H. Szatyłowicz, T.M. Krygowski, Advances in Quantum Chemical Bonding Structure, Ed. M.V. Putz, Transworld Research Network, Trivandrum, 2008, rozdz. 12 (s. 287-308).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0037