PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strukturalne konsekwencje wiązania wodorowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Strustural consequences of the h-bonding
Języki publikacji
PL
Abstrakty
EN
Hydrogen bonding belongs to the most important chemical interactions in life and geochemical processes as well as in technologies, that is documented in many review articles [1-10], monographs [11-17] and numerous publications. Figure 1 presents how "popular" are studies concerning hydrogen bonds (the term H-bond/bonding/bonded in a title, key-words or in abstract) in the last decade. First information about H-bond formation appeared at the end of XIX and a few other at beginning of XX centuries [19-24]. Most common definition of H-bonding stems from Pauling [27], whereas the newest IUPAC definition was published very recently [26]. Most frequently H-bonding is experimentally described by geometry parameters [28, 32] - results of X-ray and neutron diffraction measurements, but NMR and IR/Raman spectroscopies are also in frequent use. Characteristic of interactions by H-bonding is usually discussed in terms of energies [29-31], with use of various quantum chemical theories [54-57] and applications of various models as AIM [35, 41, 42, 45-48] and NBO [43, 44] which allowed to formulate detailed criteria for H-bond characteristics [35, 48]. H-bonds are classified as strong, mostly covalent in nature [7, 29, 34], partly covalent of medium strength [35] and weak ones, usually non-covalent [7, 29, 34, 35]. Theoretical studies of H-bonding mainly concern equilibrium systems, however simulation of H-bonded complexes with controlled and gradually changing strength of interactions [61-71] are also performed. The latter is main source of data referring to effect of H-bonding on structural properties: changes in the region of interactions, short and long-distance consequences of H-bonding. Application of the model [61] based on approaching hydrofluoric acid to the basic center of a molecule and fluoride to the acidic one, (Schemes 2 and 3) allows to study changes in molecular structure of para-substituted derivatives of phenol and phenolate [62, 64] in function of dB…H, or other geometric parameter of H-bond strength (Fig. 2). It is also shown that CO bond lengths in these complexes is monotonically related to H-bond formation energy and deformation energy due to H-bond formation [65]. Alike studies carried out for para-substituted derivatives of aniline and its protonated and deprotonated forms [77, 78, 81] give similar picture (Fig. 3). AIM studies of anilines [77, 78] lead to an excellent dependence of logarithm of electron density in the bond critical point and geometric parameter of H-bond strength, dB…H presented in Figure 4. Substituents and H-bond formation affect dramatically geometry of amine group [66] in H-bonded complexes of aniline as shown by changes of pyramidalization of bonds in amine group (Fig. 5). Some short- and long-distance structural consequences of H-bonding are shown by means of changes in ipso angle (for amine group) in the ring and ipso-ortho CC bond lengths (Fig. 6). Moreover, the mutual interrelations are in line with the Bent-Walsh rule [84, 86]. Changes of the strength of H-bonds in complexes of p-substituted aniline and its protonated and deprotonated derivative are dramatically reflected by aromaticity of the ring66 estimated by use of HOMA index [87, 88] (Fig. 7), where strength of H-bonding is approximated by CN bond lengths. Scheme 4 presents application of the SESE [91] (Substituent Effect Stabilization Energy) for description in an energetic scale joint substituent and H-bond formation effects.
Rocznik
Strony
953--974
Opis fizyczny
Bibliogr. 92 poz., wykr.
Twórcy
Bibliografia
  • [1] P.A. Kollman, L.C. Allen, Chem. Rev., 1972, 72, 283.
  • [2] B. Chen, I. Alkorta, I. Rozas, J. Elguero, Chem. Soc. Rev., 1998, 27, 163.
  • [3] P. Hobza, Z. Havlas, Chem. Rev., 2000, 100, 4253.
  • [4] R. Custelcean, J. Jackson, Chem. Rev., 2001, 101, 1963.
  • [5] A. Katrusiak, Crystall. Rev., 2003, 9, 91.
  • [6] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 2005, 105, 3513.
  • [7] S.J. Grabowski, Annu. Rep. Chem., Sec. C, 2006, 102, 131.
  • [8] H. Szatylowicz, J. Phys. Org. Chem., 2008, 21, 897.
  • [9] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
  • [10] artykuły [w:] Hydrogen Bonding - New Insights, Ed. S.J. Grabowski, Springer, Dordrecht, 2006.
  • [11] G.C. Pimentel, A.L. McClellan, The Hydrogen Bond, WH Freeman and Co., San Francisco, 1960.
  • [12] The Hydrogen Bond, Recent Developments in Theory and Experiments, Eds: P. Schuster, G. Zundel, C. Sandorfy, North-Holland Publishing Company, Amsterdam, 1976.
  • [13] G.A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1990.
  • [14] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.
  • [15] S. Scheiner, Hydrogen Bonding, A Theoretical Perspective, Oxford University Press, Oxford, 1997.
  • [16] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press, New York, 1999.
  • [17] G. Gilli, P. Gilli, The Nature of the Hydrogen Bond - Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, Oxford, 2009.
  • [18] ISI Web of Science, 2011.
  • [19] W. Nernst, Z. Phys. Chem. (Leipzig), 1891, 8, 110.
  • [20] A. Werner, Liebigs Ann. Chem., 1902, 322, 261.
  • [21] T.S. Moore, T.F. Winmill, J. Chem. Soc., Trans., 1912, 101, 1635.
  • [22] W.M. Latimer, W.H. Rodebush, J. Am. Chem. Soc., 1920, 42, 1419.
  • [23] M.L. Huggins, Undergraduate Thesis, University of California, 1919.
  • [24] M.L. Huggins, J. Org. Chem., 1936, 1, 407.
  • [25] E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem., 2011, 83, 1619.
  • [26] E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem., 2011, 83, 1637.
  • [27] C.L. Pauling, Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., Cornell University Press, Ithaca, NY, 1960, s. 449-504, pierwsze wydanie w 1939.
  • [28] S.J. Grabowski, T.M. Krygowski, Tetrahedron, 1998, 54, 5683.
  • [29] G.R. Desiraju, Acc. Chem. Res., 2002, 35, 565.
  • [30] K. Biradha, Cryst. Eng. Comm., 2003, 5, 374.
  • [31] M. Nishio, Cryst. Eng. Comm., 2004, 6, 130.
  • [32] F.H. Allen, Acta Crystallogr., Sec. B: Struct. Sci., 2002, 58, 380.
  • [33] G. Gilli, P. Gilli, J. Mol. Struct., 2000, 552, 1.
  • [34] R. Parthasarathi, V. Subramanian, N. Santhyamurthy, J. Phys. Chem. A, 2006, 110, 3349.
  • [35] S.J. Grabowski, W.A. Sokalski, E. Dyguda, J. Leszczynski, J. Phys. Chem. B, 2006, 110, 6444.
  • [36] T. Dziembowska, B. Szczodrowska, T.M. Krygowski, S.J. Grabowski, J. Phys. Org. Chem., 1994, 7, 142.
  • [37] D. Ekonomiuk, M. Kiełbasiński, A. Koliński, Acta Biochim. Polonica, 2005, 52, 741.
  • [38] M. Terazima, Phys. Chem. Chem. Phys., 2006, 8, 545.
  • [39] B. Furtig, J. Buck, V. Manoharan, W. Bermal, A. Jaschke, P. Wenter, S. Pitsch, H. Schwalbe, Biopolymers, 2007, 86, 360.
  • [40] S. Kitagawa, K. Uemura, Chem. Soc. Rev., 2005, 34, 109.
  • [41] R.F.W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, UK, 1990.
  • [42] P.L.A. Popelier, Atoms in Molecules - An Introduction, Pearson Education, Harlow, 2000.
  • [43] Tłumaczenie terminu zaczerpnięte z pracy: P.M. Wojciechowski, Wiad. Chem., 2005, 59, 193.
  • [44] F. Weinhold, C.R. Landis, Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press: Cambridge, 2005.
  • [45] T.S. Koritsanszky, F. Coppens, Chem. Rev., 2001, 101, 1583.
  • [46] P.R. Mallinson, G.T. Smith, C.C. Wilson, E. Grech, K. Woźniak, J. Am. Chem. Soc., 2003, 125, 4259.
  • [47] I.S. Konovalova, Y.V. Nelyubina, K.A. Lyssenko, B.V. Paponov, O.V. Shishkin, J. Phys. Chem. A, 2011, 115, 8550.
  • [48] U. Koch, P. Popelier, J. Phys. Chem., 1995, 99, 9747.
  • [49] K. Müller-Dethlefs, P. Hobza, Chem. Rev., 2000, 100, 143.
  • [50] I. Rozas, Phys. Chem. Chem. Phys., 2007, 9, 2782.
  • [51] L. Piela, Idee Chemii Kwantowej, PWN S.A., Warszawa, 2003.
  • [52] W. Kołos, J. Sadlej, Atom i Cząsteczka, Wydanie drugie, WNT, Warszawa, 2007.
  • [53] C. Moller, M.S. Plesset, Phys. Rev., 1934, 46, 618.
  • [54] R. Krishnan, J.A. Pople, Int. J. Quantum Chem., 1978, 14, 91.
  • [55] A.D. Becke, J. Chem. Phys., 1993, 98, 5648.
  • [56] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
  • [57] Y. Zhao, D.G. Truhlar, Acc. Chem. Res., 2008, 41, 157.
  • [58] M.J. Calhorta, Chem. Commun., 2000, 801.
  • [59] J. Ireta, J. Neugebauer, M. Scheffler, J. Phys. Chem A, 2004, 108, 5692.
  • [60] M. Ziółkowski, S.J. Grabowski, J. Leszczyński, J. Phys. Chem. A, 2006, 110, 6514.
  • [61] T.M. Krygowski, J.E. Zachara, H. Szatyłowicz, J. Phys. Org. Chem., 2005, 18, 110.
  • [62] T.M. Krygowski, J.E. Zachara, H. Szatyłowicz, J. Org. Chem., 2004, 69, 7038.
  • [63] T.M. Krygowski, H. Szatyłowicz, J.E. Zachara, J. Chem. Inf. Comput, Sci., 2004, 44, 2077.
  • [64] T.M. Krygowski, H. Szatyłowicz, J.E. Zachara, J. Chem. Inf. Model., 2005, 45, 652.
  • [65] T.M. Krygowski, H. Szatyłowicz, J. Phys. Chem. A, 2006, 110, 7232.
  • [66] H. Szatyłowicz, T.M. Krygowski, P. Hobza, J. Phys. Chem. A, 2007, 111, 170.
  • [67] H. Szatyłowicz, T.M. Krygowski, J. Mol. Struct., 2007, 844, 200.
  • [68] E. Kwiatkowska, I. Majerz, A. Koll, Chem. Phys. Lett., 2004, 398, 130.
  • [69] I. Majerz, E. Kwiatkowska, A. Koll, J. Phys. Org. Chem., 2005, 18, 833.
  • [70] I. Majerz, E. Kwiatkowska, A. Koll, J. Mol. Struc., 2007, 831, 106.
  • [71] S. Scheiner, T. Kar, J. Am. Chem. Soc., 1995, 117, 6970.
  • [72] S.F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.
  • [73] C. Fonseca Guerra, T. van der Wijst, F.M. Bickelhaupt, Chem. Eur. J., 2006, 12, 3032.
  • [74] E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170.
  • [75] M.S. Gordon, J.H. Jensen, Acc. Chem. Res., 1996, 29, 536.
  • [76] L.C. Remer, J.H. Jensen, J. Phys. Chem. A, 2000, 104, 9266.
  • [77] H. Szatyłowicz, T.M. Krygowski, J.J. Panek, A. Jezierska, J. Phys. Chem. A, 2008, 112, 9895.
  • [78] I. Alkorta, J. Elguero, J. Phys. Chem. A, 1999, 103, 272.
  • [79] B. Jeziorski, R. Moszyński, K. Szalewicz, Chem. Rev., 1994, 94, 1887.
  • [80] G. Gilli, F. Bellucci, V. Ferretti, V. Bertolasi, J. Am. Chem. Soc., 1989, 111, 1023.
  • [81] P. Gilli, V. Bertolasi, V. Ferretti, G. Gilli, J. Am. Chem. Soc., 1994, 116, 909.
  • [82] H. Szatyłowicz, T.M. Krygowski, Polish J. Chem., 2004, 78, 1719.
  • [83] H. Szatyłowicz, T.M. Krygowski, J.E. Zachara-Horeglad, J. Chem. Inf. Model., 2007, 47, 875.
  • [84] A.D. Walsh, Discuss. Faraday Soc., 1947, 2, 18.
  • [85] H.A. Bent, Chem. Rev., 1961, 61, 275.
  • [86] T.M. Krygowski, H. Szatyłowicz, Trends Org. Chem., 2006, 11, 37.
  • [87] J. Kruszewski, T.M. Krygowski, Tetrahedron Lett., 1972, 3839.
  • [88] T.M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70.
  • [89] P.v.R. Schleyer, M. Manoharan, Z-X. Wang, B. Kiran, H. Jiao, R. Puchta, N.J.R.v.E. Hommes, Org. Lett., 2001, 3, 2465.
  • [90] C. Corminboeuf, T. Heine, G. Seifert, P.v.R. Schleyer, J. Weber, Phys. Chem. Chem. Phys., 2004, 6, 273.
  • [91] A. Pross, L. Radom, R.W. Taft, J. Org. Chem., 1980, 45, 818.
  • [92] H. Szatyłowicz, T.M. Krygowski, Advances in Quantum Chemical Bonding Structure, Ed. M.V. Putz, Transworld Research Network, Trivandrum, 2008, rozdz. 12 (s. 287-308).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.