PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spektrometria mas w rozróżnianiu związków chiralnych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chiral recognition by mass spectrometry
Języki publikacji
PL
Abstrakty
EN
The phenomenon of optical activity was discovered by Louis Pasteur in 1848. Since this time, chirality of organic compounds observed in biological systems has became a central theme in scientific research. Synthesis and quantitation of enantiomerically pure compounds is important for a wide range of applications. Chirally pure compounds are required not only by pharmacology, but they are also of interest in cosmetic and food industry and many other applications. Similarity of enantiomers in their chemical and physical properties, except for optical rotation, makes their separation and detection very difficult. Until now, many methods have been used for the enantioselective discrimination of organic compounds, including nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), capillary electrophoresis (CE) and chromatography (GC, HPLC), where an interference of a solvent cannot be excluded. Recent studies have shown that mass spectrometry (MS) is an alternative approach to traditional method for chiral recognition and determination of enantiomeric composition. Although, mass spectrometry has been considered as insensitive to chirality because enantiomers have the same mass and show identical mass spectra, it is now accepted as important tool for differentiating of enantiomeric compounds through their interactions with chiral reference molecules (Fig. 1). The ability to transfer diastereomeric non-covalent complexes between chiral selectors and analyte enantiomers, which differ in stability, into the gas-phase and measure such differences trough mass spectrometric ion abundances, has appeared with development of soft ionization techniques such electrospray ionization (ESI), fast atom bombardment (FAB) and matrix-assisted laser desorption/ionization (MALDI). Mass spectrometry-based methods for chiral recognition and quantitative determination of enantiomeric purity are attractive due to their speed, high sensitivity, low sample consumption, tolerance to impurities and ability to probe the analyte in a solvent free environment. Currently, there are four well-defined approaches for determining a measure of enantiomer discrimination, using either single-stage or tandem mass spectrometry. They can be classified into the following categories: (1) measurement of the relative abundance of diastereomeric complexes between chiral reference compound and the enantiomers (usually one isotopically labeled [10]), (2) enantioselective ion/molecule reaction between diastereomeric complexes and chiral or achiral reactants [11], (3) kinetic method [12] and (4) collision-induced dissociation (CID) of diastereomeric adducts in a tandem mass spectrometry (MS/MS) experiment [61, 62]. Over the past decade, new approaches to chiral separation and analysis of enantiomers have been introduced, where molecules are separated based on their mobility (ion mobility spectrometry) [66].
Rocznik
Strony
609--649
Opis fizyczny
Bibliogr. 71 poz., wykr.
Twórcy
autor
  • Centrum Badań Molekularnych i Makromolekularnych Polskiej Akademii Nauk, Środowiskowe Laboratorium Badań Fizykochemicznych, ul. Sienkiewicza 112, 90-363 Łódź, ewdrabik@wp.pl
Bibliografia
  • [1] L. Pasteur, Researches on the Molecular Asymmetry of Natural Organic Products, Alembic Club Reprints, Edinburgh, 1897.
  • [2] L. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, C.J. Clay and Sons, London, 1904.
  • [3] G. Uccello-Barretta, L. Vanni, F. Balzano, J. Chromatogr. A, 2010, 1217, 928.
  • [4] N. Berova, L. Di Bari, G. Pescitelli, Chem. Soc. Rev., 2007, 36, 914.
  • [5] G. Gübitz, M.G. Schmid, J. Chromatogr. A, 2008, 1204, 140.
  • [6] Y. Okamoto, T. Ikai, Chem. Soc. Rev., 2008, 37, 2593.
  • [7] G. Sicoli, F. Pertici, Z. Jiang, L. Jicsinkszy, V. Schurig, Chirality, 2007, 19, 391.
  • [8] H.M. Fales, G.J. Wright, J. Am. Chem. Soc., 1977, 99, 2339.
  • [9] K.A. Shug, W. Lindner, J. Sep. Sci., 2005, 28, 1932.
  • [10] M. Sawada, Mass Spectrom. Rev., 1997, 16, 73.
  • [11] M. Speranza, Int. J. Mass Spectrom., 2004, 232, 277.
  • [12] W.A. Tao, R.G. Cooks, Anal. Chem., 2003, 75 (1), 5A.
  • [13] C.A. Schalley, Mass Spectrom. Rev., 2001, 20, 253.
  • [14] M. Yamashita, J.B. Fenn, J. Phys. Chem., 1984, 88, 4451.
  • [15] M.S. Wilm, M. Mann, Int. J. Mass Spectrom. Ion Processes, 1994, 136, 167.
  • [16] M. Sawada, M. Shizuma, Y. Takai, H. Yamada, T. Kaneda, T. Hanafusa, J. Am. Chem. Soc., 1992, 114, 4405.
  • [17] Y. Takai, K. Iguchi, H. Yamada, M. Shizuma, R. Arakowa, M. Sawada, J. Mass Spectrom., 2006, 41, 266.
  • [18] M. Shizuma, H. Adachi, D. Ono, H. Sato, M. Nakamura, Chirality, 2009, 21, 324.
  • [19] P. Gerbaux, J. De Winter, D. Cornil, K. Ravicini, G. Pesesse, J. Cornil, R. Flammang, Chem. Eur. J., 2008, 14, 11039.
  • [20] K.A. Schug, P. Frycak, N.M. Maier, W. Lindner, Anal. Chem., 2005, 77, 3660.
  • [21] C. Czerwenka, N.M. Maier, W. Lindner, Anal. Bioanal. Chem., 2004, 379, 1039.
  • [22] K.A. Schug, N.M. Maier, W. Lindner, Chem. Commun., 2006, 414.
  • [23] K.A. Schug, N.M. Maier, W. Lindner, J. Mass Spectrom., 2006, 41, 157.
  • [24] M.E. Koscho, C. Zu, B.N. Brewer, Tetrahedron: Asymmetry, 2005, 16, 801.
  • [25] B.N. Brewer, C. Zu, M.E. Koscho, Chirality, 2005, 17, 456.
  • [26] C. Zu, J.A. Woolfolk, M.E. Koscho, Int. J. Mass Spectrom., 2009, 288, 44.
  • [27] C. Zu, J.A. Woolfolk, M.E. Koscho, Anal. Chim. Acta, 2010, 661, 60.
  • [28] C. Zu, B.N. Brewer, B. Wang, M.E. Koscho, Anal. Chem., 2005, 77, 5019.
  • [29] B. Botta, F. Caporuscio, D. Subissati, A. Tafi, M. Botta, A. Filippi, M. Speranza, Angew. Chem. Int. Ed., 2006, 45, 2717.
  • [30] B. Botta, F. Caporuscio, I. D'Acquarica, G. D. Monache, D. Subissati' A. Tafi, M. Botta, A. Fillippi, M. Speranza, Chem. Eur. J., 2006, 12, 8096.
  • [31] B. Botta, G. D. Monache, C. Frasschetti, L. Nevola, D. Subissati, M. Speranza, Int. J. Mass Spectrom., 2007, 267, 24.
  • [32] B. Botta, A. Tafi, F. Caporuscio, M. Botta, L. Nevola, I. D'Acquarica, C. Frasschetti, M. Speranza, Chem. Eur. J., 2008, 14, 3585.
  • [33] M. Speranza, I. D'Acquarica, C. Frasschetti, B. Botta, A. Tafi, L. Bellucci, G. Zappia, Int. J. Mass Spectrom., 2010, 291, 84.
  • [34] B. Botta, C. Frasschetti, I. D'Acquarica, M. Speranza, F.R. Novara, J. Mattay, M.C. Letzel, J. Phys. Chem. A, 2009, 113, 14625.
  • [35] A. Filippi, F. Gasparrini, M. Pierini, M. Speranza, C. Villani, J. Am. Chem. Soc., 2005, 127, 11913.
  • [36] F. Gasparrini, M. Pierini, C. Villani, A. Filippi, M. Speranza, J. Am. Chem. Soc., 2008, 130, 522.
  • [37] M. Speranza, F. Gasparrini, B. Botta, C. Villani, D. Subissati, C. Frasschetti, F. Subrizi, Chirality, 2009, 21, 69.
  • [38] Y. Cheng, D. M. Hercules, J. Mass Spectrom., 2001, 36, 834.
  • [39] A.R.M. Hyyryläinen, J. M. H. Pakarinen, E. Forró, F. Fülöp, P. Vainitalo, J. Am. Soc. Mass Spectrom., 2009, 20, 1235.
  • [40] S.C.X. Ahn, C.B. Lebrilla, S. Gronert, J. Am. Soc. Mass Spectrom., 2005, 16, 166.
  • [41] X. Cong, G. Czerwieniec, E. McJimpsey, S. Ahn, F.A. Troy, C.B. Lebrilla, J. Am. Soc. Mass Spectrom., 2006, 17, 442.
  • [42] G. Grigorean, C.B. Lebrilla, Anal. Chem., 2001, 73, 1684.
  • [43] J .S. Patrik, T. Kotiaho, S.A. McLuckey, R.G. Cooks, Mass Spectrom. Rev., 1994, 13, 287.
  • [44] P.H. Wong, R.G. Cooks, Acc. Chem. Res., 1998, 31, 379.
  • [45] D. Zhang, W.A. Tao, R.G. Cooks, Int. J. Mass Spectrom., 2001, 204, 159.
  • [46] L. Wu, W.A. Tao, R.G. Cooks, Anal. Bioanal. Chem., 2002, 373, 618.
  • [47] W.A. Tao, L. Wu, R.G. Cooks, J. Am. Soc. Mass Spectrom., 2001, 12, 490.
  • [48] W.A. Tao, F.C. Gozzo, R.G. Cooks, Anal. Chem., 2001, 73, 1692.
  • [49] D.V. Augusti, F. Carazza, R. Augusti, W.A. Tao, R.G. Cooks, Anal. Chem., 2002, 74, 3458.
  • [50] W.A. Tao, L. Wu, G.R. Cooks, J. Med. Chem., 2001, 44, 3541.
  • [51] W.A. Tao, D. Zhang, E.N. Nikolaev, R.G. Cooks, J. Am. Chem. Soc., 2000, 122, 10598.
  • [52] S. Kumari, S. Prabhakar, M. Vairamani, C.L. Devi, G.K. Chaitanya, K. Bhanuprakash, J. Am. Soc. Mass Spectrom., 2007, 18, 1516.
  • [53] S. Kumari, S. Prabhakar, M. Vairamani, Rapid Commun. Mass Spectrom., 2008, 22, 1393.
  • [54] S. Ramagiri, R. Gupete, I. Racov, C.R. Yates, D.D. Miller, Rapid Commun. Mass Spectrom., 2008, 22, 639.
  • [55] K.A. Schug, W. Linder, J. Am. Soc. Mass Spectrom., 2005, 16, 825.
  • [56] L. Wu, R.G. Cooks, Anal. Chem., 2003, 75, 678.
  • [57] M.K. Lee, A.P. Kumar, D. Jin, Y. Lee, Rapid Commun. Mass Spectrom., 2008, 22, 909.
  • [58] A.R.M. Hyyryläinen, J.M.H. Pakarinen, E. Forró, F. Fülöp, P. Vainiotalo, J. Mass. Spectrom., 2010, 54, 198.
  • [59] W.A. Tao, R.L. Clarc, R.G. Cooks, Anal. Chem., 2002, 74, 3783.
  • [60] L. Wu, E.C. Meurer, R.G. Cooks, Anal. Chem., 2004, 76, 663.
  • [61] Z.P. Yao, T.S.M. Wan, K.-P. Kwong, C.-T. Che, Anal. Chem., 2000, 72, 5383.
  • [62] Z.P. Yao, T.S.M. Wan, K.-P. Kwong, C.-T. Che, Anal. Chem., 2000, 72, 5394.
  • [63] M. Ravikumar, S. Prabhakar, M. Vairamani, Chem. Comm., 2007, 392.
  • [64] M.R. Kumar, S. Prabhakar, T. Sivaleela, M. Vairamani, J. Mass Spectrom., 2007, 42, 1218.
  • [65] T. Sivaleea, M.R. Kumar, S. Prabhakar, G. Bhaskar, M. Vairamani, Rapid Commun. Mass Spectrom., 2008, 22, 204.
  • [66] J .R. Enders, J.A. Mclean, Chirality, 2009, 21, E253.
  • [67] A. Mie, M. Jornten-Karlsson, B.-O. Axelsson, A. Ray, C.T. Reimann; Anal. Chem., 2007, 79, 2850.
  • [68] A. Mie, A. Ray, B.-O. Axelsson, M. Jornten-Karlsson, C.T. Reimann, Anal. Chem., 2008, 80, 4133.
  • [69] J . Sultan, W. Gabryelski, Anal. Chem., 2006, 78, 2905.
  • [70] M. McCooeye, L. Ding, G.J. Gardner, C.A. Fraser, J. Lam, R.E. Sturgeon, Z. Mester, Anal. Chem., 2003, 75, 2538.
  • [71] P. Dwivedi, C. Wu, L.M. Matz, B.H. Clowers, W.F. Siems, H.H. Hill, Anal. Chem., 2006, 78, 8200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.