PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania wybranych enzymów z tkanek zwierzęcych w syntezie organicznej i biokatalizie. Część II. Oksydoreduktazy, transferazy, liazy, izomerazy

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Applications of enzymes from animal tissues in organic synthesis, Part 2
Języki publikacji
PL
Abstrakty
EN
This work shows systematically known types of animal enzymes and their applications in synthesis of pharmaceuticals and nonracemic organic compounds. It lays out similarities in procedures of isolation and purification of particular enzymes. Such procedures usually are so simple that they can be used in every industrial or research laboratory. Most animal enzymes are well-investigated and their structures and substrate specificity are known. They are used as biocatalysts in many chemical processes. Others were used in one or a few reactions but their natural substrates and biochemical properties are described. Trials of predicting potential applications of such enzymes and other substrates for them were performed. Typical applications of: – Oxidoreductases: horse liver alcohol dehydrogenase [3–13], lactate dehydrogenase [16–18], glutamate dehydrogenase [19, 20], carbonyl reductase [24], catalase [27]; – Transferases: transaldolase [29], galactosyltransferase [30], UDP-glucuronosyltransferase [31], fucosyltransferase [34], farnesyl diphosphate synthase [35]; – Lyases: DOPA decarboxylase [38, 39], aldolase [42]; – Isomerases: N-acyl-D-glucosamine 2-epimerase [44] were described. Also examples of or recombined [24, 39, 44] enzymes are given in the text. These modifications enhance catalytic properties or reduce costs of using enzymes. In practical applications a biocatalytic effect of enzymes from animal sources is often compared with microbial ones. This text is focused on processes where animal enzymes gave much better results (yield and enantioselectivity) than microorganisms. They are also proper, unlike whole microorganisms, to investigate and computer analysis of mechanism of the reaction. Enzymes isolated from animal tissues usually have well-defined structure of active site which is a key to predict mechanisms. A quantitative analysis of applications of these enzymes was performed. Among animal enzymes hydrolases and oxidoreductases have found the most applications in synthesis. Transferases are also often used. Other classes of enzymes seldom act as biocatalysts. It is general tendency, true also in relation to microbial and plant enzymes.
Rocznik
Strony
585--607
Opis fizyczny
Bibliogr. 44 poz., wykr.
Twórcy
autor
  • Instytut Chemii Organicznej Polskiej Akademii Nauk ul. Kasprzaka 44/52, 01-224 Warszawa, rysza@icho.edu.pl
Bibliografia
  • [1] J .E. Leresche, H.-P. Meyer, Org. Process. Res. Dev., 2006, 10, 572.
  • [2] K. Dalziel, Biochem. J., 1960, 80, 440.
  • [3] A.J. Bridges, P. Sundara Raman, G.S.Y. Ng, J. Bryan Jones, J. Am. Chem. Soc., 1984, 106, 1461.
  • [4] I.J. Jakovac, H.B. Goodbrand, K.P. Lok, J. Bryan Jones, J. Am. Chem. Soc., 1982, 104, 4659.
  • [5] A.J. Irwin, J. Bryan Jones, J. Am. Chem. Soc., 1977, 99, 1625.
  • [6] W. Gładkowski, Wiad. Chem., 2009, 63, 361.
  • [7] Ch.H. Wong, J.R. Matos, J. Org. Chem., 1985, 50, 1992.
  • [8] H. Shigematsu, T. Matsumoto, G. Kawauchi, Y. Hirose, K. Naemura, Tetrahedron-Asymmetr., 1995, 6, 3001.
  • [9] L.K.P. Lam, I.A. Gair, J. Bryan Jones, J. Org. Chem., 1988, 53, 1611.
  • [10] J . Davies, J. Bryan Jones, J. Am. Chem. Soc., 1979, 101, 5405.
  • [11] T. Takemura, J. Bryan Jones, J. Org. Chem., 1983, 48, 791.
  • [12] E. Caspi, Ch.R. Eck, J. Org. Chem., 1977, 42, 767.
  • [13] C. Baldoli, P. Del Buttero, S. Maiorana, G. Ottolina, S. Riva, Tetrahedron-Asymmetr., 1998, 9, 1497.
  • [14] T. Arai, A. Inoue, Y. Uematsu, T. Sako, N. Kimura, Res. Vet. Sci., 2003, 75, 15.
  • [15] S. Fernandes, R. Hatti-Kaul, B. Mattiasson, Biotechnol. Bioeng., 2002, 79, 472.
  • [16] B.L. Hirschbain, G.M. Whitesides, J. Am. Chem. Soc., 1982, 104, 4458.
  • [17] M.-J. Kim, G.M. Whitesides, J. Am. Chem. Soc., 1988, 110, 2959.
  • [18] . Miyazaki, T. Sakakibara, H. Sato, Y. Kajihara, J. Am. Chem. Soc., 1999, 121, 1411.
  • [19] R.L. Hanson, M.D. Schwinden, A. Banerjee, D.B. Brzozowski, B.-Ch. Chen, B.P. Patel, C.G. McNamee, G.A. Kodersha, D.R. Kronenthal, R.N. Patel, L.J. Szarka, Bioorgan. Med. Chem., 1999, 7, 2247.
  • [20] R.N. Patel, Biomol. Eng., 2001, 17, 167.
  • [21] G.L. Forrest, B. Gonzalez, Chem.-Biol. Interact., 2000, 129, 21.
  • [22] Y. Imamura, T. Migita, M. Otagiri, T. Choshi, S. Hibino, J. Biochem. (Tokyo), 1999, 125, 41.
  • [23] N. Usami, S. Ishikura, H. Abe, M. Nagano, M. Uebuchi, A. Kuniyasu, M. Otagiri, H. Nakayama, Y. Imamura, A. Hara, Chem.-Biol. Interact., 2003, 143, 353.
  • [24] H. Shimada, S. Fujiki, M. Oginuma, M. Asakawa, T. Okawara, K. Kato, S. Yamamura, H. Akita, A. Hara, Y. Imamura, J. Mol. Catal. B-Enzym., 2003, 23, 29.
  • [25] N.A. Salvi, S.R. Udupa, A. Banerji, Biotech. Lett., 1998, 20, 201.
  • [26] Z. Yassen, S. Jadallah, The Islamic Univ. J., 2009, 17, 37.
  • [27] S. Christen, P.T. Southwell-Keely, R. Stocker, Biochem., 1992, 31, 8090.
  • [28] E. Kuhn, K. Brand, Biochem., 1972, 11, 1767.
  • [29] E. Graci, M. Mangiarotti, S. Pontremoli, Biochem., 1962, 1, 628.
  • [30] J .H. Yoon, G.H. Ryu, P. Finch, J.S. Rhee, J. Mol. Catal. B-Enzym., 2001, 15, 191.
  • [31] G.N. Jenkins, A.V. Stachulski, F. Scheinmann, N.J. Turner, Tetrahedron-Asymmetr., 2000, 11, 413.
  • [32] M.M. Palcic, Methods Enzymol., 1994, 230, 300.
  • [33] V.A. Morais, J. Costa, J. Biotech., 2003, 106, 69.
  • [34] X. Qian, O. Hindsgaul, H. Li, M.M. Palcic, J. Am. Chem. Soc., 1998, 120, 2184.
  • [35] J .K. Dorsey, J.A. Dorsey, J.W. Porter, J. Biol. Chem., 1966, 241, 5353.
  • [36] B.C. Reed, H.C. Rilling, Biochem., 1975, 14, 50.
  • [37] C. Borri Voltattorni, A. Minelli, P. Vecchini, A. Fiori, C. Turano, Eur. J. Biochem., 1979, 93, 181.
  • [38] M. Bertoldi, C. Borri Voltattorni, Protein Science, 2001, 10, 1178.
  • [39] C. Borri Voltattorni, M. Bertoldi, S. Bianconi, W.-P. Deng, K. Wong, I.H. Kim, B. Herbert, K.L. Kirk, Biochem. Biophys. Res. Comm., 2002, 295, 107.
  • [40] R.J. Peanasky, H.A. Lardy, J. Biol. Chem., 1958, 233, 365.
  • [41] a) G. Seoane, Curr. Org. Chem., 2000, 4, 283; b) J. Sukumaran, U. Hanefeld, Chem. Soc. Rev., 2005, 34, 530.
  • [42] L. El Blidi, D. Crestia, E. Gallienne, C. Demuynck, J. Bolte, M. Lemaire, Tetrahedron-Asymmetr., 2004, 15, 2951.
  • [43] I. Maru, Y. Ohta, K. Murata, Y. Tsukada, J. Biol. Chem., 1996, 271, 16294.
  • [44] Z. Liu, R. Weis, A. Glieder, Food Technol. Biotech., 2004, 42, 248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.