PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elektrooptyczny efekt Kerra w chemii

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Electrooptic Kerr effect in chemistry
Języki publikacji
PL
Abstrakty
EN
The electro-optical Kerr effect finds wide application in conformational analysis of molecules and molecular aggregates [1–5], particularly in cases where the standard X-ray and NMR techniques cannot be used. For instance, NMR allows to establish conformations of linear and cyclic unsaturated organic compounds. However, it is less effective in an analysis of molecular complexes, particularly of those that have several rotational symmetry axes. In such cases a combination of techniques based on molecular dipole moments, electro-optical Kerr effect, optical Kerr effect, IR spectroscopy, and Rayleigh scattering can be applied [6]. The foundations of conformational analysis of molecular complexes using several complementary physical approaches are developed in Ref. [7]. The electro-optical methods are particularly useful for an investigation of intramolecular interactions [8–18]. The strength, direction and other details of intramolecular interactions can be determined by analyzing the deviations of the experimental molar Kerr constant (mK) from its value calculated according to the tensor-additive scheme that operates with polarizability tensors of molecular cores and functional groups [19, 20]. For instance, using this approach it has been shown that weakening of conjugation in an electron donor-acceptor chain can lead to flattening of the molecular structure [21]. The Kerr constant is also very sensitive to intermolecular interactions [22–29]. In order to assess quantitatively an extent of the solvent effect on the mK values, both molecular and continuum models of solution structure have been used [30, 31]. The mK values are greatly affected by the mutual orientation of solvent and solute molecules, which interact by dispersive, inductive and dipole-dipole forces [32]. Hydrogen and donor-acceptor bonding have an even stronger influence on the mK values [33]. The equimolar mixtures approach developed in Ref. [34] allows to determine the molar Kerr constant (mK), dipole moment (m), equilibrium constant (K) and, ultimately, structure of a molecular complex based on measurements of the Kerr constant (B), dielectric permittivity (e), density (d) and refractive index (n) of a series of dilute solutions of the complex. Future trends in the development of the electro-optical methods in chemistry are discussed. Theories that relate the electric-optic proprieties of molecules with their reactivity are particularly important. Such theories should be able to predict the changes in the polarizabilities and dipole moments of bonds, molecules and molecular aggregates during the course of chemical reactions.
Rocznik
Strony
1--31
Opis fizyczny
Bibliogr. 82 poz., wykr.
Twórcy
autor
autor
autor
autor
  • Department of Chemistry, University of Rochester, Rochester, NY 14627-0216
Bibliografia
  • [1] W. Preżdo, Zastosowanie Efektów Elektrooptycznych w Chemii i Technice, WSP, Kielce, 1999, 78.
  • [2] V.V. Prezhdo, M.V. Khashchina, S.A. Tyurin, Efekty Elektrooptyczne w Technice, Osnowa, Charków, 1989, 160 (Ros.).
  • [3] A.N. Vereshchagin, Polaryzowalność Cząsteczek, Nauka, Moskwa, 1980, 177 (Ros.).
  • [4] Z. Błaszczak, Elektrooptyczny efekt Kerra [w]: Metody Elektrooptyczne i Magnetooptyczne, Sobczyk L., Ed., PWN, Warszawa, 1983, 72.
  • [5] J.C. Kolecki, An Introduction to Tensors for Students of Physics and Engineering, NASA, Glenn Research Center, 2002.
  • [6] G. Briegleb, [w:] Light scattering from dilute polymer solutions, Eds. D. McIntyre, F. Gornick, New York; London, Gordon and Breach, 1964, 318.
  • [7] S. Hahn, Teoria modulacji i detekcji, Wyd. Politechniki Warszawskiej, Warszawa, 1990.
  • [8] R.P. Smith, E.M. Mortensen, J. Chem. Phys., 1961, 32, 502.
  • [9] R.J.W. Le Fevre, Adv. Phys. Org. Chem., 1965, 3, 1.
  • [10] C.G. Le Fevre, R.J.W. Le Fevre, Rev. Pure and Appl. Chem., 1955, 5, 261.
  • [11] G.L.D. Ritchie, E.W. Blanch, J. Phys. Chem. A, 2003, 107, 2093.
  • [12] A.N. Wereszczagin, W.E. Kataew, A.A. Bredichin, A.P. Timoszewa, E.N. Kozakova, Analiza konformacyjna węglowodorów i ich pochodnych, Nauka, Moskwa, 1990, 296 (Ros.).
  • [13] E.A. Ishmaeva, A.P. Timosheva, Russian J. General Chem., 1998, 68, 1763.
  • [14] A.N. Wereszczagin, S.G. Wylfson, Analiza konformacyjna związków element organicznych, Nauka, Moskwa, 1983, 252 (Ros.).
  • [15] Ya.A. Vereshchagina, E.A. Ishmaeva, A.A. Gazizowa, Rus. J. Gen. Chem., 2008, 77(1), 41.
  • [16] E.A. Ishmaeva, E.A. Gazizowa, Ya.A. Vereshchagina, Rus. J. Gen. Chem., 2008, 77(5), 798.
  • [17] Ya.A. Vereshchagina, A.A. Gazizowa, E.A. Ishmaeva, Rus. J. Gen. Chem., 2009, 79(6), 918.
  • [18] Ya.A. Vereshchagina, E.A. Ishmaeva, A.A. Gazizowa, Rus. J. Gen. Chem., 2007, 76(3), 477.
  • [19] N.V. Timosheva, A.P. Timosheva, R.P. Arshinova, J.P. Dumasta, Rus. J. Gen. Chem., 1998, 68(11),1793.
  • [20] K.M. Pietrusievich, V.E. Kataev, I.I. Patsanovskyi, L.V. Ermolaeva, E.A. Ishmaeva, A.V. Kataev, W. Wieczorek, K, Zygo, Rus. J. Gen. Chem., 1998, 68(9), 1510.
  • [21] C.K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithace, 1969, 1266.
  • [22] L.M. Stock, J. Chem. Educ., 1972, 49, 400.
  • [23] C.J.P. Bottcher, Theory of Electric Polarization, Vol. 2. Elsevier Sci. Publ. Company, Amsterdam, Oxford, New York, 1978, 560.
  • [24] A.R. Czerkasow, W.I. Galkin, R.A. Czerkasow, Usp. Khimii, 1996, 65, 695.
  • [25] A. Caristan, P. Bothorel, H. Bodot, J. Chim. Phys., 1969, 66, 1009.
  • [26] Z. Daszkiewicz, J.B. Kyzioł , W.W. Preżdo, J. Zaleski, J. Mol. Str., 2000, 553, 9.
  • [27] V.V. Prezhdo, A.S. Bykova, T. Glowiak, O.V. Prezhdo, Z. Daszkiewicz, J.B. Kyzioł, Polish J. Chem., 2001, 75, 707.
  • [28] V.V. Prezhdo, A.S. Bykova, O.V. Prezhdo, J.B. Kyzioł, Z. Daszkiewicz, Russian J. General Chem., 2006, 76, 64.
  • [29] V.V. Prezhdo, E.V. Vaschenko, O.V. Prezhdo, A. Puszko, J. Mol. Str., 1998, 471, 127.
  • [30] V.V. Prezhdo, E.V. Vaschenko, O.V. Prezhdo, A. Puszko, J. Mol. Str., 1999, 510, 69.
  • [31] V.V. Prezhdo, E.V. Ovsiankina, O.V. Prezhdo, J. Mol. Str., 2000, 522, 71.
  • [32] J.F. Freimanis, Organic Compounds with Intramolecular Charge Transfer, Zinatne, Riga, 1985, 374 (Ros.).
  • [33] V.V. Prezhdo, E.V. Ovsyankina, O.V. Prezhdo, Polish I. Chem., 2001, 75, 1521.
  • [34] V.A. Palm, Podstawy Ilooeciowej Teorii Reakcji Organicznych, Chemia, Leningrad, 1977, 359 (Ros.).
  • [35] M.J.S. Dewar, R.C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Pub. Corp., New York, 1975, 576.
  • [36] E.A.C. Lucken, J. Chem. Soc., 1959, 2954.
  • [37] O.V. Prezhdo, A.S. Bykova, V.V. Prezhdo, A. Koll, Z. Daszkiewicz, J. Mol. Str., 2001, 559, 321.
  • [38] Z. Latajka, G. Galewski, AJ. Barnes, H. Ratajczak, J. Mol. Struct. 2007, 844-845, 340.
  • [39] O.V. Prezhdo, B. Gawdzik, V.V. Zubkova, V.V. Prezhdo, J. Mol. Struct., 2009, 919,146.
  • [40] S.B. Bulgarevich, T.V. Burdastykh, E.S. Selezniova, E.E. Akimova, Rus. J. Gen. Chem., 2007, 77 (7), 1155.
  • [41] M.J. Aroney, R.J.W. Le Fevre, J. Chem. Soc., 1956, 2775.
  • [42] S. Kielich, Chem. Phys. Lett., 1971, 10, 516.
  • [43] S. Kielich, J. Phys. (France), 1968, 29, 619.
  • [44] S. Kielich, J. Chem. Phys., 1967, 46, 4090.
  • [45] V.V. Prezhdo, I.P. Krainov, Oddziaływania międzycząsteczkowe i elektryczne właściwości cząsteczek, Osnova, Charków, 1994, 240 (Ros.).
  • [46] V.V. Prezhdo, M.V. Khashchina, V.A. Zamkov, Badania elektrooptyczne w fizyce i chemii, Wyższa Szkoła, Charków, 1982, 182 (Ros.).
  • [47] O.V. Prezhdo, L. O. Ewitek, V.V. Zubkova, V.V. Prezhdo, Acta Phys. Polonica, 2005, 108, 429.
  • [48] R.J.W. Le Fevre, G.L.D. Ritche, P.J. Stiles, J. Chem. Soc. Chem. Communs., 1966, 326.
  • [49] R.S. Armstrong, M.J. Aroney, R.K. Duffin, J. Chem. Soc. Perkin Trans. II, 1973, 1362.
  • [50] R.J.W. Le Fevre, D.V. Radford, G.L.D. Ritche, P.J. Stiles, J. Chem. Soc. B, 1968, 148.
  • [51] P.A. Hopkins, R.J.W. Le Fevre, G.L.D. Ritche, J. Chem. Soc. B, 1971, 574.
  • [52] P. Dopieralski, J. Panek, K. Mierzwicki, Z. Latajka, H. Ratajczak, A. Barnes, J. Mol. Struct. Theochem, 2009, 916, 72.
  • [53] Z. Latajka, G. Gajewski, A.J. Barnes, D. Xue, H. Ratajczak, J. Mol. Struct., 2009, 928, 121.
  • [54] Z. Latajka, G. Gajewski, A.J. Barnes, H. Ratajczak, J. Mol. Struct., 2007, 844-845, 340.
  • [55] E. Borisenko, A.V. Morev, A. Koll, J. Mol. Struct. Theochem., 1998, 444 (1-3), 183.
  • [56] E.N. Gurjanova, I.P. Goldshtein, I.P. Romm, Wiązanie Donorowo-Akceptorowe, Khimiya, Moskwa, 1993, 398.
  • [57] V.V. Prezhdo, E.V. Vaschenko, O.V. Prezhdo, Russian J. General Chem., 2000, 70, 128.
  • [58] V.V. Prezhdo, O.V. Prezhdo, E.V. Vaschenko, J. Mol. Str., 1996, 385, 137.
  • [59] R. Wolny, A. Koll, L. Sobczyk, J. Phys. Chem., 1985, 89, 2053.
  • [60] R. Wolny, A. Koll, L. Sobczyk, Bull. Soc. Chim. Belg., 1984, 93, 88.
  • [61] S. Detoni, D. Hadzi, R.S. Merkolij, J. Hawranek, L. Sobczyk, J. Chem. Soc., 1970, 2851.
  • [62] V.V. Prezhdo, E.V. Vaschenko, O.V. Prezhdo, A. Puszko, J. Mol. Str., 1999, 510, 69.
  • [63] S. Kielich, Mol. Phys., 1963, 6, 49.
  • [64] O.V. Prezhdo, S.A. Tyurin, M. Pisarczyk, A. Odziemek, V.V. Prezhdo, Acta Phys. Polonica, 2002, 101, 477.
  • [65] Z. Woźniak, M.S. Kaczmarek, J. Mol. Liq., 2007, 130, 108.
  • [66] S.S. Batsanov, Refraktometria Strukturalna, Wyższa Szkoła, Moskwa, 1976, 304 (Ros.).
  • [67] G. Zundel, Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology, [w:] Advances in Chemical Physics, V. 111, Eds. I. Prigogine and S.A. Rice, J. Wiley & Sons, New York, 2000, 217.
  • [68] G.C. Pimental, A.L. McClellan, The Hyrogen Bond, Reinhold Pab. Comp., New York, San Francisco, 1960, 475.
  • [69] Molecular electronics: properties, dynamic, and applications, Eds. G. Mahler, V. May, M. Schreiber, Marcel Dekker, New York, 1996, 396.
  • [70] B.F. Levine, C.G. Bethea, J. Chem. Phys., 1976, 65, 2429; 1977, 66, 1070.
  • [71] V.V. Prezhdo, G.V. Tarasowa, O.V. Prezhdo, S.A. Tyurin, O.N. Akulova, T.N. Kurskaya, Acta Phys. Polonica, 1994, 85, 327, 797; 1996, 89, 47.
  • [72] M. Melnichuk, L.T. Wood, Phys. Rev. A, 2010, 82, 01382.
  • [73] S. Nakabayashi, K. Matumoto, K. Uosaki, J. Electroanalytical Chem., 1995, 396, 397.
  • [74] S.-W. Choi, S.-I. Yamamoto, Y. Haseba, H. Kikuchi, Optical Materials, 2009, 32, 190.
  • [75] A. Ghanadzadeh, M.S. Beevers. J. Mol. Liq., 2001, 92, 217; 2003, 107, 77.
  • [76] N. Yevlampieva, B. Dardel, P. Lavrenko, R. Deschenaux, Chem. Phys. Lett., 2003, 382 (1-2) 32.
  • [77] D. Scanu, N.P. Yevlampieva, R. Deschenaux, Macromolecules, 2007, 40(4), 1133.
  • [78] J. Philip, T.A.P. Rao, Optical and Quantum Electronic, 1992, 24, 825.
  • [79] V.V. Voitylov, A.A. Trusov, Elektrooptyka i konduktometria układów polidyspersyjnych, Wyd. Leningrad, Uniwersytetu, Leningrad, 1989.
  • [80] N.P. Evlampieva, G.M. Pavlov, I.I. Zaitseva, M.V. Chirkova, E.G. Litvinova, V.S. Khotimskii, E.I. Ryumtsev, Russian J. General Chem., 2003, 73(3) 344.
  • [81] N.P. Evlampieva, T.A. Dmitrieva, E.I. Ryumtsev, Russian J. Appl. Chem., 2003, 76(10), -1637.
  • [82] O.V. Prezhdo, W. Boszczyk, V.V. Zubkova, V.V. Prezhdo, J. Phys. Chem. C, 2008, 112, 13263.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0017-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.