PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary studies on the organic matter deposition and particle filtration processes in a sandy beach in Sopot - southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sopot's intensively used sandy beach was studied to assess organic matter deposition and swash water filtration through the sediment on the water line. The swash water contained from 4 to 80 mg Total Suspended Matter (TSM) per dm3, 3 to 12% of it was organic. Phytoplankton ranged from 1 to 15 million cells per dm3, depending on the water turbidity and contained a mixture of pelagic and micro-phytobentic taxa. Plankton larvae and Rotatoria dominated the animal biomass. In the process of wave filtration through the sand all planktonic animals were retained in the sediment, while a number of meiofaunal Nematoda and Ciliata were actively transported ("washed out") from the upper sediment layers. Macroscopic particle (filamentous algae) deposition in May ranged from 20 to 1000 g POC m-2 per day. Nutrient concentrations were higher in the interstitial water than in the swash water, for most of the year. Hence, we suppose that the Sopot municipal beach serves as a nutrient source for coastal waters.
Słowa kluczowe
Rocznik
Strony
71--84
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • Institute of Ecology, Polish Academy of Sciences Dziekanów Leśny, 05-092 Łomianki, Poland
  • Institute of Oceanology, Polish Academy of Science ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Science ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Science ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1]. Boudreau B. P., Huettel M., Forster S., Jahnke R.A., McLachlan A., Middelburg J. J., Nielsen P., Sansone F., Taghon G., Van Raaphorst W., Webster I., Węsławski J. M., Wiberg P., Sundby B., 2001, Permeable marine sediments: overturning an old paradigm, Trans. Am. Geophys. Union, 82, 133-136.
  • [2]. Brown A. C., McLachlan A., 1990, Ecology of sandy shores, Elsevier, Amsterdam, 328 pp.
  • [3]. Feller R. J., Warwick R. M., 1988, Energetics, [in:] Introduction to the study of meiofauna, Higgins R. P., Thiel H. (eds.), Smithsonian Institution Press, Washington DC, 181-196.
  • [4]. Frankowski L., Bolałek J., 1997, Phosphate desorption front sediments in the Pomeranian Bay (Southern Baltic), Oceanol. Stud., 26 (1), 205-214.
  • [5]. Geniach S. A., 1978, Food-chain relationship in subtidal suity sand marine sediments and
  • [6]. the role of meiofauna in stimulating bacterial productivity, Oecologia, 33, 55-69. Grasshoff K., Kremling K., Ehrhardt M., 1999, Methods of seawater analysis, Wiley- VCH Verlag, Weinheim, 600 pp.
  • [7]. Jankowska K., 2001, Ecosystem of sandy beaches as a live environment of heterotrofic bacteria, PhD thesis, Technical University of Gdańsk, Gdańsk, 188 pp., (in Polish). Jędrzejczak M. F., 1999, The degradation of stranded carrion on a Baltic Sea sandy
  • [8]. beach, Oceanol. Stud., 28 (3-4), 109-141.
  • [9]. Knapińska-Skiba D., Radecki Z., Bojanowski R., 1997, Transport mechanisms of radiocaesium (137 CS) in a land-sea system (the Baltic), Oceanol. Stud., 26 (1), 187-194.
  • [10]. Lehvo A., Back S., 2001, Survey of macroalgal mars in the Gulf of Finland, Baltic Sea, Aquat. Conserv. Mar. Freshwat. Ecosyst., 11 (1), 11-18.
  • [11]. Liebezeit G., Velimirov B, 1984, Distribution of inorganic and organie nutrients in a sandy beach at Ischia, Bay of Naples, Oceanis, 10 (4), 437-447.
  • [12]. Massel S. R., 2001, Circulation of groundwater due to the wave set-up on a permeable beach, Oceanologia, 43 (3), 279- 290.
  • [13]. Massel S. R., Pelinovsky E. N., 2001, Run-up of dispersive and breaking waves on beaches, Oceanologia, 43 (1), 61-97.
  • [14]. McLachlan A., 1979, Volumes of sea water filtered through Easten Cape sandy beaches, S. Afr. J. Sci., 75, 75-79.
  • [15]. McLAchlan A., 1982, A model for the estimation of water filtration and nutrient regeneration by exposed sandy beaches, Mar. Environ. Res., 6, 37-47.
  • [16]. McLachlan A., 1983, Sandy beach ecology - review, Sandy beach as ecosystem, McLachlan A., Erasmus T. (ed.), W. Junk, 321-380.
  • [17]. Oliff W. D., Gardner B. D., Turner W. D., Sharp J. B., 1970, The chemistry of the interstitial waters as a measure of conditions in a sandy beach, Water Res., 4, 179-188
  • [18]. Osterling M., Pihl L., 2001, Effects offilamentous green algal mats on benthic macrofaunal functional feeding groups, J. Exp. Mar. Biol. Ecol., 263, 159-183.
  • [19]. Pliński M., 1995, Phytoplankton of the Gulf of Gdańsk in 1992 and 1993, Oceanologia, 37 (1), 123-137.
  • [20]. Urban-Malinga B., Opaliński K. W., 1999, Vertical zonation of the total, biotic and abiotic oxygen consumption on a Baltic sandy beach, Oceanol. Stud., 28 (3-4), 85-96.
  • [21]. Urban-Malinga B., Opaliński K. W., 2001, Interstitial respiration in a Baltic sandy beach: horizontal zonation, Oceanologia, 43, 455-468.
  • [22]. Węsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K. W., Szymelfenig M., Dutkowski M., 2000, Sandy coastlines - are there conflicts between recreation and natural values?, Oceanol. Stud., 29 (2), 5-18.
  • [23]. Żmijewska M. I., Niemkiewicz E., Bielecka L., 2000, Abundance and species composition of plankton in the Gulf of Gdańsk-Wschód (Gdańsk-East) sewage treatment plant, Oceanologia, 42 (3), 335-357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0016-0044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.