PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cadmium and copper toxicity assessment in activated sludge using TTC bioassay

Identyfikatory
Warianty tytułu
PL
Wykorzystanie testu TTC do oceny toksyczności kadmu i miedzi w osadzie czynnym
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to determine the effect of various cadmium and copper concentrations on the activated sludge dehydrogenase activity. The investigations were carried out in six aerated chambers with activated sludge, volume of 1L each, by the continuous culture method (one control chamber, not contaminated with heavy metals and five with 0.5; 1; 2; 4; 8 mg L-1 Cu+2 and 0.1; 0.3; 0.9; 2.7; 8.1 mg L-1 Cd2+). Cadmium sulfate and copper sulfate as a source of heavy metals were used. The concentrations of these metal ions, causing 50% dehydrogenase activity inhibition were determined. The particular attention was paid to the toxic effect of metal ions, as well as the variations of the microbial respiration activity proceeded during toxins exposition. The investigation showed that even the lowest concentration of the investigated metal ions caused significant changes of the activated sludge dehydrogenases activity. Copper ions showed to be more toxic than cadmium ions.
PL
Celem niniejszej pracy było określenie wpływu różnych stężeń kadmu i miedzi na aktywność dehydrogenaz mikroorganizmów osadu czynnego. Badania przeprowadzono z wykorzystaniem sześciu komór z napowietrzanym osadem czynnym, każda o objętości 1L (niezanieczyszczona próba stanowiła kontrolę, a pozostałe zawierały: 0,5; 1; 2; 4; 8 mg L-1 Cu+2 oraz 0,1; 0,3; 0,9; 2,7; 8,1 mg L-1 Cd2+). Metale wprowadzano do zawiesiny w postaci siarczanu kadmu i siarczanu miedzi. Wyznaczono stężenia jonów powodujące 50% zahamowanie aktywności dehydrogenaz. Szczególną uwagę zwrócono na porównanie toksyczności jonów obu metali oraz na zachodzące w czasie pod ich wpływem zmiany aktywności oddechowej mikroorganizmów. Badania wykazały, że nawet najniższe z zastosowanych stężeń badanych związków powodowały istotne zmiany w aktywności dehydrogenaz osadu. Jony miedzi okazały się być bardziej toksyczne niż jony kadmu.
Rocznik
Strony
85--94
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Chaperon S., S. Sauve: Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation, Ecotoxicology and Environmental Safety, 70, 1-9 (2008).
  • [2] Wang J., C. Chen: Biosorbenst for heavy metals removal and their future, Biotechnology Advances, 27, 195-226 (2009).
  • [3] Yim J. H., K. W. Kim, S. D. Kim: Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: Prediction of acid mine drainage toxicity, Journal of Hazardous Materials, B138, 16-21 (2006).
  • [4] Ong S-A., P-E. Lim Seng, C-E., M. Hirata, T. Hano: Effects of Cu(II) and Cd(II) on the performance of sequencing batch reactor treatment system. Process Biochemistry, 40, 453-460 (2005).
  • [5] Tsai Y-P., S-J. You, T-Y. Pai, K-W. Chen: Effect of cadmium on composition and diversity of bacterial communities in activated sludges. International Biodeterioration & Biodegradation, 55, 285-291 (2005).
  • [6] Asci Y., M. Sag Nurbas, Y. Acikel: A comparative study for the sorption of Cd(II) by K-feldspar and sepiolite as soil components, and the recovery of Cd(II) using rhamnolipid biosurfactant, Journal of Environmental Management, 88, 383-392 (2008).
  • [7] Pamukoglu M. Y., F. Kargi: Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS), Enzyme and Microbial Technology, 42, 76-82 (2007).
  • [8] Pamukoglu M. Y., F. Kargi: Copper(II) ion toxicity in activated sludge processes as function of operating parameters, Enzyme and Microbial Technology, 40, 1228-1233 (2007).
  • [9] Bensaid A., J. Thierie, M Pennincky: The use of the tetrazolium salt XTT for the estimation of biological activity of activated sludge cultivated under steady-state and transient regimes Journal of Microbiological Methods, 40, 255-263 (2000).
  • [10] Pamukoglu M. Y., F. Kargi: Mathematical modeling of copper(II) ion inhibition on COD removal in an activated sludge unit, Journal of Hazardous Materials, 146, 372-377 (2007).
  • [11] Berg J.M., J.L. Tymoczko, L Stryer: Biochemistry, PWN, Warsaw [in polish] (2005).
  • [12] Griebe T., G. Schaule, S. Wuertz: Determination of microbial respiratory and redox activity in activated sludge, Journal of Industrial Microbiology & Biotechnology, 19, 118-122 (1997).
  • [13] Moreno J. L., T. A. Hernández Pérez, C. Garcia: Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose, Applied Soil Ecology, 21, 149-158 (2002).
  • [14] Nwuche C. O., E. O. Ugoji: Effects of heavy metal pollution on the soil microbial activity. International Journal of Environmental Science Technology, 5(2), 409-414 (2008).
  • [15] Fulladosa E., J-C. Murat, I. Villaescusa: Study on the toxicity of binary equitoxic mixtures of metals using the luminescent bacteria Vibrio fischeri as a biological target, Chemosphere, 58, 551-557 (2005).
  • [16] Lv Z., Y. Yao, Z. Lv, H. Min: Effect of tetrahydrofuran on enzyme activities in activated sludge, Ecotoxicology and Environmental Safety, 70, 259-265 (2008).
  • [17] Miksch K.: The influence of TTC concentration on determining of activated sludge activity, Acta Hyrochim. Hydrobiol. 13, 67-73 (1985).
  • [18] Finney D.J.: Statistical methods in biological assay, Charles Griffin Co., London (1978).
  • [19] Solomon K., J. Giesey, P. Jones: Probabilistic risk assessment of agrochemicals in the environment, Crop Protection, 19, 649-655 (2000).
  • [20] Murray J.D.: Mathematical Biology. I: An Introduction, PWN, Warsaw 2006 [in polish].
  • [21] You S-J., Y-P. Tsai, R-Y. Huang: Effect of heavy metals on nitrification performance in different activated sludge processes, Journal of Hazardous Materials, 165, 987-994 (2009).
  • [22] Semerci N., F. Cecen: Importance of cadmium speciation in nitrification inhibition. Journal of Hazardous Materials, 147, 503-512 (2007).
  • [23] Kabata-Pendias A., H. Pendias: Elements biogeochemistry, PWN, Warsaw 1999 [in polish]
  • [24] Al-Qodah Z.: Biosorption of heavy metal ions from aqueous solutions by activated sludge, Desalination, 196, 164-176 (2006).
  • [25] Laurent J., M.C. Casellas Dagot: Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties, Journal of Hazardous Materials 162, 652-660 (2009).
  • [26] Kao W-C., C-C. Huang, J-S. Chang: Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli, Journal of hazardous materials, 158, 100-106 (2008).
  • [27] Pamukoglu M. Y., F. Kargi: Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: A statistical design approach, Bioresource Technology 100, 2348-2354 (2009).
  • [28] Pamukoglu M. Y., F. Kargi: Removal of copper(II) ions from aqueous medium by biosorption onto powdered waste sludge, Process Biochemistry, 41, 1047-1054 (2006).
  • [29] Brako E. E., A. K. Wilson, M. M. Jonah, C. A. Blum, E. A. Cerny, K. L. Williams, M. H. Bhattacharyya: Cadmium pathways during gestation and lactation in control versus metallothoinein 1,2-knockout mice, Toxicological Sciences, 71, 154-163 (2003).
  • [30] Zang B., J. S. Suzki, N. Nishimura, C. Tohyama: Difference in cadmium cytotoxicity in two kidney cell lines (LLC - PK and MDCK) with special reference to metallothionein, Toxicology In Vitro, 9, 765-772 (1995).
  • [31] Hatano A., R. Shoji: A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model, Comparative Biochemistry and Physiology 151, 25-32 (2010).
  • [32] Madoni P., M. G. Romeo: Acute toxicity of heavy metals towards freshwater ciliated protests, Environmental Pollution, 141, 1-7 (2006).
  • [33] Smyłła A., B. Malinowska, A. Kliś, P. Krupa, M. Kostecki: The influence of cadmium and copper on mikrofauna of activated sludge, Archives of Environmental Protection, 37(1), 3-11 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0016-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.