PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation flux balance of the sea-atmosphere system over the southern Baltic Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Developed at IO PAS, Sopot, and first presented at the BALTEX Study Conference in Visby (Dera et al., 1995), the improved radiation transfer model was applied to determine the following radiation fluxes in the southern Baltic region: the flux entering the Earth's atmosphere Q1, the sum of fluxes absorbed Q2 and scattered upwards (reflected) in the atmosphere Q2´ , the direct solar ray flux reaching the sea surface Q3, the diffuse solar flux (scattered downwards in the atmosphere) reaching the sea surface Q4, the total solar flux reaching the sea surface Q5, the total flux reflected by the sea surface Q6, the total flux entering the water column Q7, the flux scattered upwards by the water body and leaving the sea surface Q8, the flux absorbed in the water column Q9, that absorbed by the water itself Q10, that absorbed by admixtures other than phytoplankton pigments Q11, and that absorbed by phytoplankton pigments Q12, the photosynthetically stored radiation flux Q13 and the effective infrared radiation flux at the sea surface Q14. The model has been developed for the application of satellite images as the main source of input data. However, since the relevant satellite data are not yet available, a long-term meteorological and bio-optical standard database has been used in the computations. The mean monthly fluxes and their balances for the southern Baltic region, divided into 20 sub-regions, have been obtained for each month of the year.
Czasopismo
Rocznik
Strony
277--306
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland, kaczmar@iopan.gda.pl
Bibliografia
  • 1. Augustyn M., 1985, Characteristics of the southern Baltic climate, Inst. Meteor. Water Managm., Gdynia, 61 pp.
  • 2. Bignami F., Marullo S., Santoleri R., Schiano M. E., 1995, Longwave radiation budget in the Mediterranean Sea, J. Geophys. Res., 100 (C2), 2501-2514.
  • 3. Bird E. R., Riodan C., 1986, Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth surface for cloudless atmospheres, Solar Energy, 25, 87-97.
  • 4. Czyszek W., Wensierski W., Dera J., 1979, Inflow and absorption of solar energy in Baltic waters, Stud. i Mater. Oceanol., 26, 105-140, (in Polish).
  • 5. Dera J., Rozwadowska A., 1991, Solar radiation variability over the Baltic Sea due to weather conditions, Oceanologia, 30, 5-36.
  • 6. Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • 7. Dera J., Woźniak B., Rozwadowska A., Kaczmarek S., 1995, Solar radiation energy absorbed by Baltic waters; the example of the Gdańsk Basins, [in:] First Study Conference on BALTEX, Visby, Sweden, August 28–September 1, A. Omstedt (ed.), BALTEX Secretariat, 3, 63.
  • 8. Dobson F. W., Smith S. D., 1988, Bulk models of solar radiation at sea, Q. J. R. Meteor. Soc., 1145, 165-182.
  • 9. Green A. E. S., Wagner J. C., Mann A., 1988, Analytic spectral functions for atmospheric transmittance calculations, Appl. Opt., 27 (11), 2266-2272.
  • 10. Gulev S. K., 1997, Climatologically significant effects of space-time averaging in the North Atlantic sea-air heat flux fields, J. Climate, 10, 2743-2763.
  • 11. Gueymard C., 1993, Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data, Solar Energy, 51 (2), 121-138.
  • 12. ICES Rep., 1989, Baltic Sea Patchiness Experiment PEX ′86. Part 1. General Report, Int. Council Explor. Sea, Copenhagen, 163 pp.
  • 13. Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea (Case 2 Waters), Oceanologia, 37 (2), 285-297.
  • 14. Krężel A., 1985, Solar radiation at the Baltic Sea surface, Oceanologia, 21, 5-32
  • 15. Lenoble J. 1985, Radiative transfer in scattering and absorbing atmosphere: standard computational procedures, A. DEEPAK Publ., Hampton, Virginia, 300 pp.
  • 16. Mobley C. D., 1994, Light and water. Radiative transfer in natural waters, Acad. Press, San Diego, 577 pp.
  • 17. Morel A., 1988, Optical modelling of the upper ocean in relation to its biogenous matter content (Case 1 Waters), J. Geophys. Res., 93, 10749-10768.
  • 18. Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Progr. Oceanogr., 26, 263-306.
  • 19. Ooms M. C. (ed.), 1996, ULISSE (Underwater Light Seatruth Satellite Experiment), Commiss. European Union Joint Res. Centre, Ispra, Italy, spec. publ., 1.96.29, 506 pp.
  • 20. Pomeranec K. S., 1966, Baltic Sea heat budget, Rep. PIHM, 1, 19-48, (in Polish).
  • 21. Raschke E., (ed.), 1996, Radiation and water in the climate system. Remote measurements, Springer Verlag, Berlin–Heidelberg, 617 pp.
  • 22. Timofeyev N. A., 1983, Radiation regime of the oceans, Nauk. Dumka, Kiyev, 247 pp, (in Russian).
  • 23. Trenberth K. E. (ed.), 1992, Climate system modelling, Cambridge Univ. Press Cambridge, 788 pp.
  • 24. Woźniak B., Pelevin V. N., 1991, Optical classification of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25-55.
  • 25. Woźniak B., Dera J., Koblentz-Mishke O. J., 1992, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • 26. Woźniak B., Rozwadowska A., 1995, Mathematical semi-empirical model for solar radiation transmittance through the atmosphere over the South Baltic, Inst. Oceanol. PAN Rep. 1995, 15 p., (in Polish).
  • 27. Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. J., Darecki M., 1997, ‘IO PAS initial model’ of marine primary production for remote sensing applications, Oceanologia, 39 (4), 377-395.
  • 28. Woźniak B., Rozwadowska A., Kaczmarek S., Woźniak S. B., Ostrowska M., Seasonal variability of the solar radiation flux and its utilisation in the South Baltic, [in:] Proc. 21th Baltic Mar. Sci. Conf., October 22–26, 1996, Rønne, (Bornholm), ICES Co-operative Res. Ser., (in press).
  • 29. Woźniak S. B., 1996a, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 1. The physical problem and mathematical apparatus, Oceanologia, 38 (4), 447-467.
  • 30. Woźniak S. B., 1996b, Sea surface slope distribution and foam coverage as functions of the mean height of wind waves, Oceanologia, 38 (3), 317-332.
  • 31. Woźniak S. B., 1997, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 2. Modelling results and application, Oceanologia, 39 (1), 17-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0015-0055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.