PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finding the aerosol optical thickness over the Baltic Sea - comparison of two methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of two methods used to estimate the aerosol optical thickness over the Baltic Sea are compared. The standard method is based on measurements of the direct component of the downward irradiance at the sea surface in 8 spectral bands (412, 443, 490, 510, 555, 670, 765, 865 nm - the same as SeaWiFS). In the pyranometric method, Baltic aerosols are assumed to be a mixture of model aerosol types with strictly defined optical properties, i.e. maritime, continental and stratospheric types. Their proportion in the Baltic aerosol is found from broadband spectral downward irradiance measurements (VIS, IR) using the radiative transfer model. Simultaneous measurements of the spectral downward irradiance and its direct component on cloudless days in the southern Baltic were used in the comparison. The pyranometric method of estimating the aerosol optical thickness proved to be a satisfactory tool. Depending on the wavelength, the statistical errors in it are not in excess of plus_min.0.06 - 0.08.
Czasopismo
Rocznik
Strony
165--182
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland, ania@iopan.gda.pl
Bibliografia
  • 1. Amato U., Esposito F., Serio C., Pavese G., Romano F., 1995, Inverting high spectral resolution aerosol optical depth to determine the size distribution of atmospheric aerosol, Aerosol Sci. Technol., 23, 591-602.
  • 2. Bird R. E., Riordan C., 1986, Simple spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres, J. Clim. Appl. Meteor., 25, 87-97.
  • 3. Bokoye A. I., de la Casiniere A., Cabot T., 1997, Angstrom turbidity parameters and aerosol optical thickness: a study over 500 solar beam spectra, J. Geophys. Res., 102 (D18), 21905-21914.
  • 4. Coakley J. A., Jr., Cess R. D., Yurevich F. B., 1983, The effect of tropospheric aerosols on the earth’s radiation budget: a parametrisation for climate models, J. Atmosph. Sci., 40, 116-138.
  • 5. Dziewulska-Łosiowa A., 1991, Ozone in the atmosphere, PWN, Warszawa, 396 pp., (in Polish).
  • 6. Gong S. L., Barrie L. A., Blanchet J. P., 1997a, Modelling sea-salt aerosols in the atmosphere, 1. Model development, J. Geophys. Res., 102 (D3), 3805-3818.
  • 7. Gong S. L., Barrie L. A., Prospero J. M., Savoie D. L., Ayers G. P., Blanchet J. P., Spacek L., 1997b, Modelling sea-salt aerosols in the atmosphere, 2. Atmospheric concentrations and fluxes, J. Geophys. Res., 102 (D3), 3819-3830.
  • 8. Gordon H. R., Clark D. K., Brown J. W., Brown O. B., Evans R. H., Broenkov V. V., 1983, Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates, Appl. Opt., 22, 20-36.
  • 9. Kasten F., 1966, A new table and approximation formula for the relative optical air mass, Arch. Meteor. Geophys. Bioklim., B14, 206-223.
  • 10. Kuśmierczyk-Michulec J., Darecki M., 1996, The aerosol optical thickness over the Baltic Sea, Oceanologia, 38 (4), 423-435.
  • 11. Kuśmierczyk-Michulec J., Kr¨uger O., Marks R., Aerosol influence on the SeaWiFS bands: extinction measurements in a marine summer atmosphere over the Baltic Sea, (in press).
  • 12. McClatchey R. A., Bolle H. J., Kondratev K. Ya., Joseph H. J., Raschke E., Pollack J. B., Spankuch D., Mateer C., 1984, A preliminary cloudless standard atmosphere for radiation computation, Int. Ass. Meteor. Atmosph. Phys., Radiat. Commiss., Boulder, Colorado, 53 pp.
  • 13. Neckel H., Labs D., 1981, Improved data of solar spectral irradiance from 0.33 to 1.25 μm, Solar Phys., 74, 231-249.
  • 14. Leckner B., 1978, The spectral distribution of solar radiation at the earth’s surface-elements of a model, Solar Energy, 20, 143-150.
  • 15. Olszewski J., Kuśmierczyk-Michulec J., Sokólski M., 1995, A method for the continuous measurement of the diffusivity of the natural light field over the sea, Oceanologia, 37 (2), 299-310.
  • 16. Paltridge G. W., Platt C. M. R., 1976, Radiative processes in meteorology and climatology, Elsevier, Amsterdam–London–New York, 318 pp.
  • 17. Smirnov A., Royer A., O’Neill T. N., Tarussov A., 1994, A study of the link between synoptic air mass type and atmospheric optical parameters, J. Geophys. Res., 99 (D10), 20967-20982.
  • 18. Tarasova T. A., Abakumova G. M., Plakhina I. N., 1992, An evaluation of aerosol light absorbing properties from measured direct and total solar radiation under cloudless sky, Fiz. Atm. i Okeana, 28 (4), 384-390, (in Russian).
  • 19. Timofeyev N. A., 1983, Radiation regime of the oceans, Nauk. Dumka, Kiyev, 247 pp., (in Russian).
  • 20. Van Stokkom H. T. C., Guzzi R., 1984, Atmospheric spectral attenuation of airborne remote sensed data: comparison between experimental and theoretical approach, Int. J. Remote Sens., 5, p. 925.
  • 21. Villevalde Yu. V., Smirnov A. V., O’Neill N. T., Smyshlyaev S. P., Yakovlev V. V., 1994, Measurement of aerosol optical depth in the Pacific Ocean and the North Atlantic, J. Geophys. Res., 99 (D10), 20983-20988.
  • 22. Weller M., Leiterer U., 1988, Experimental data on spectral aerosol optical thickness and its global distribution, Beitr. Phys. Atmosph., 61 (1), 1-9.
  • 23. Woźniak B., Rozwadowska A., Kaczmarek S., Woźniak S. B., Ostrowska M., Seasonal variability of the solar radiation flux and its utilisation in the South Baltic, Proc. 21th Baltic Mar. Sci. Conf., October 22-26, 1996, Rønne (Bornholm), ICES Co-operative Res. Ser., (in press).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0015-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.