PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of the marine aerosol on infrared propagation over the World Ocean

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the modern world, where infrared systems are operated by the world's navies, it is important to understand the effect that large marine aerosols have on the propagation of these signals. This article reviews some of the work that has taken place to describe these aerosols and their scattering and absorption of infrared wavelength radiation. The paper describes those aerosols found in the marine environment which are produced by the whitewater phenomenon over the ocean, such as jet drops from breaking air bubbles at the sea surface and the shearing away of large droplets from cresting waves. These processes are the result of cresting of ocean waves and the breaking of swell and waves on the shore and are referred to as "open ocean phenomena" and "coastal processes". The paper also presents some of the early results of the United States coastal aerosol research project, EOPACE (Electro Optics Propagation Assessment in the Coastal Environment).
Słowa kluczowe
Czasopismo
Rocznik
Strony
489--513
Opis fizyczny
Bibliogr. 32 poz., wykr.
Twórcy
Bibliografia
  • 1. Battalino T. E., 1998, Air mass characterization for EO propagation assessment, Proc. NATO Res. and Technol. Organ. Symp. ‘EO propagation, signature and system performance under adverse meteorological conditions considering out-of-area operations’, 16–19 March, Naples, Italy, RTO–MP–1 AC/323(SET)TP/2, paper 17.
  • 2. Blanchard D. C., 1954, Bursting of bubbles at an air-water interface, Nature, 173, p. 1048.
  • 3. Blanchard D. C., 1963, The electrification of the atmosphere by particles from bubbles in the Sea, [in:] Progress in oceanography, M. Sears (ed.), Pergamon Press Book, MacMillan Co., New York, 1, 71-202.
  • 4. Chaen M., 1973, Studies on the production of sea-salt particles on the sea surface, Mem. Fac. Fish., Kogoshima Univ., 22, p. 49.
  • 5. Dave J. V., 1968, Subroutines for computing the parameters of the electromagnetic radiation scattered by a sphere, IBM Rep., 320-3237.
  • 6. Fitzgerald J. W., Hoppel W. A., Gelbard F., 1998a, A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 1. Model description, J. Geophys. Res., 103 (D), 16085-16102.
  • 7. Fitzgerald J. W., Marti J. J., Hoppel W. A., Frick G. M., Gelbard F., 1998b, A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. 2. Model application, J. Geophys. Res., 103 (D), 16103-16177.
  • 8. Gathman S. G., 1989, A preliminary description of NOVAM, the Navy Oceanic Vertical Aerosol Model, Naval Res. Lab. Rep. 9200, Washington, D.C. 20375-5000.
  • 9. Gathman S. G., 1983, Optical properties of the marine aerosol as predicted by the Navy Aerosol Model, Opt. Eng., 22 (1), p. 57.
  • 10. Gathman S. G., Davidson K. L., 1993, The Navy Oceanic Vertical Aerosol Model, NCCOSC Tech. Rep. 1634, RDT & E DIV., San Diego, CA 92152-5001.
  • 11. Gathman S. G., Eijk A. M. J. van, 1998, Electro-optical propagation just above wave tops as predicted by ANAM, the Advanced Navy Aerosol Model, Proc. NATO Res. and Technol. Organ. Symp. ‘EO propagation, signature and system performance under adverse meteorological conditions considering out-of-area operations’, 16–19 March, Naples, Italy, RTO–MP–1 AC/323(SET)TP/2, paper 21.
  • 12. Gathman S. G., Hoppel W. A., 1970, Surf electrification, J. Geophys. Res., 75 (24), p. 4525.
  • 13. Gathman S. G., Jensen D. R., 1995, Aerosol characteristics in a coastal region (results from MAPTIP), [in:] Atmospheric propagation and remote sensing 4, J. Christopher Dainty (ed.), SPIE Proc., Orlando Florida, 2471, p. 1.
  • 14. Gathman S. G., Jensen D. R., Hooper W. P., James J. E., Gerber H. E., Davidson K., Smith M. H., Consterdine I. E., Leeuw G. de, Kunz G. J., Moorman M. M., 1993, NOVAM evaluation utilizing electro-optics and meteorological data from KEY–90, NCCOSC Tech. Rep. 1608, RDT & E DIV., San Diego, CA 92152–5000.
  • 15. Gathman S. G., Smith M. H., 1997, On the nature of surf generated aerosol and their effect on electro-optical systems, SPIE Proc. ‘Propagation and imagining through the atmosphere’, 3125, p. 2.
  • 16. Gerber H. E., 1985, Relative-humidity parameterization of the Navy Aerosol Model (NAM), NRL Rep. 8956.
  • 17. Hale G. M., Query M. R., 1973, Optical constants of water in the 200 nm to 200 (micrometre) wavelength region, Appl. Opt., 12, 555-563.
  • 18. Hänel G., 1976, The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, [in:] Advances in geophysics, H. E. Landsberg & J. Mieghem van, Academic Press, New York, 19, 73-188.
  • 19. Hooper W. P., Martin L. U., 1999, Scanning LIDAR measurements of surf-zone aerosol generation, Opt. Eng., 38 (2), 250-255.
  • 20. Jensen D. R., Leeuw G. de, Eijk A. M. J. van, 1993, Work plan for the Marine Aerosol Poperties and Thermal Imager Performance trial (MAPTIP), NCCOSC Tech. Rep. 2573, RDT & E DIV., San Diego, CA 92152-5000.
  • 21. Jensen D. R., Zeisse C. R., Littfin K. M., Gathman S. G., 1997, EOPACE (Electrooptical Propagation Assessment in Coastal Environments) overview and initial accomplishments, SPIE Proc. ‘Propagation and imaging through the atmosphere’, 3125, p. 98.
  • 22. Kiser R. E., 1997, The generation and characterization of surf zone aerosols and their impact on naval electro-optical systems, M. Sc thesis, Naval Postgraduate School, Monterey, California.
  • 23. Kneizys F. X., Shettle E. P., Gallery W. O., Chetwynd J. H., Abreu J. W., Selby J. E. A., Clough S. A., Fenn R. W., 1983, Atmospheric transmittance/radiance: computer code LOWTRAN–6, AFGL–TR–83–0187, Environm. Res. Papers, 846, Air Force Geophys. Lab., Hanscome AFB, Massachusetts, 01731.
  • 24. Leeuw G. de, 1986, Size distributions of giant aerosol particles close above sea level, J. Aerosol Sci., 17, 293-296.
  • 25. Littfin K., Gathman S., Jensen D., Zeisse C., 1998, Analysis of three methods of characterizing an air mass, Proc. NATO Res. and Technol. Organ. Symp. ‘EO propagation, signature and system performance under adverse meteorological conditions considering out-of-area operations’, 16–19 March, Naples, Italy, RTO–MP–1 AC/323(SET)TP/2, paper 21.
  • 26. Littfin K., Goroch A. K., 1997, Determination of the origin of an air mass using nephelometer measurements and the Navy Aerosol model, SPIE Proc. ‘Propagation and imaging through the atmosphere’, 3125 (CA), p. 6.
  • 27. Mestayer P. G., Eijk A. M. J. van, Leeuw G. de, Trancant B., 1996, Numerical simulation of the dynamics of sea spray over the waves, J. Geophys. Res., 10, 20771–20797.
  • 28. Monahan E. C., Spiel D. E., Davidson K. L., 1983, A model of marine aerosol generation via whitecaps and wave disruption, [in:] Oceanic whitecaps, E. C. Monahan & G. MacNiocoill (eds.), D. Reidel Publ. Co., Dordrecht, p. 167.
  • 29. Piazzola J., Eijk A. M J. van, Leeuw G. de, An extension of the Navy Aerosol Model to coastal areas, (in press).
  • 30. Preobrazhenskii L. Yu., 1973, Estimate of the content of spray drops in the near water layer of the atmosphere, Fluid Mech.– Soviet Res., 2, p. 95.
  • 31. Vignati E. 1999, Modelling interactions between aerosols and gaseous compounds, Ph. D. thesis, Copenhagen Univ., Copenhagen.
  • 32. Vrins E., Hofschreuder P., 1983, Sampling total suspended particulate matter, J. Aerosol Sci., 14, 318-322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0015-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.