PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of non-photosynthetic pigments on the measured quantum yield of photosynthesis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to assess the effect of non-photosynthetic (photoprotecting) pigments on the measured quantum yield of photosynthesis in the sea. The energy absorbed by these pigments is not utilised during photosynthesis. As a result, the measured yield of this process, i.e. the photosynthetic yield referred to the total energy absorbed by all phytoplankton pigments, is less than the actual quantum yield of photosynthesis, i.e. the yield referred to the energy absorbed by photosynthetic pigments only. The model of the absorption properties of marine phytoplankton derived by the authors (see Wozniak et al. 2000, this volume) was employed to determine the relevant contributions of photosynthetic and non-photosynthetic pigments to the total energy absorbed by phytoplankton in different trophic types of seas and at different depths in the water column. On this basis the non-photosynthetic pigment absorption factor fa, which describes the relation between the true and measured quantum yields of photosynthesis, could be characterised. The analysis shows that fa varies in value from 0.33 to 1, and that it depends on the trophic type of sea and the depth in the water column. The values of this factor are usually highest in eutrophic waters and decrease as waters become progressively more oligotrophic. It is also characteristic of fa that it increases with increasing depth in the sea.
Czasopismo
Rocznik
Strony
231--242
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
  • Institute of Physics, Pedagogical University
  • Institute of Physics, Pedagogical University
autor
  • Institute of Oceanology, Polish Academy of Sciences
autor
  • Institute of Oceanology, Polish Academy of Sciences
  • Institute of Physics, Pedagogical University
  • Institute of Physics, Pedagogical University, Arciszewskiego 22 B, PL-76-200 Słupsk, Poland, darek@wsp.slupsk.pl
Bibliografia
  • 1. Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P. G., 1996a, Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res., 43, 1241-1272.
  • 2. Babin M., Sadoudi N., Lazzara L., Gostan J., Partensky F., Bricaud A., Veldhuis M., Morel A., Falkowski P. G., 1996b, Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Optics 13, Proc. SPIE, 2963, 314-319.
  • 3. Baker K. S., Smith R. C., 1982, Bio-optical classification and model of natural waters 2, Limnol. Oceanogr., 27 (3), 500-509.
  • 4. Bidigare R., Latasa M., Johnson Z., Barber R. T., Trees C. C., Balch W. M., 1996, Observations of a Synechococcus-dominated cyclonic eddy in open-oceanic water of the Arabian Sea, Ocean Optics 13, Proc. SPIE, 2963, 260-265.
  • 5. Bidigare R., Ondrusek M. E., Morrow J. H., Kiefer D. A., 1990, ‘In vivo’ absorption properties of algal pigments, Ocean Optics 10, Proc. SPIE, 1302, 290-302.
  • 6. Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
  • 7. Majchrowski R., Ostrowska M., 2000,Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • 8. Morel A., 1988, Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93, 10.749-10.768.
  • 9. Smith R. C., Baker K. S., 1978, Optical classification of natural water, Limnol. Oceanogr., 23 (2), 260-267.
  • 10. Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.
  • 11. Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
  • 12. Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • 13. Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246-275.
  • 14. Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997, ‘IOPAS initial model’ of marine primary production for remote sensing applications, Oceanologia, 39 (4), 377-395.
  • 15. Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995, Algorithm for estimating primary production in the Baltic by remote sensing, Stud. i Mater. Oceanol., 68, 91-123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.