PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical in situ chlorophyll fluorometry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The range of variability of the fluorescence properties of marine phytoplankton in different trophic types of seas and at different depths in the sea is analysed theoretically. An attempt is also made to interpret artificially induced in situ fluorescence measured with submersible fluorometers. To do this, earlier optical models of light absorption by phytoplankton (see Wozniak et al. 2000, this volume) and actual empirical data were applied. A straightforward theoretical model of artificially photoinduced phytoplankton fluorescence accounting for the complex influence of different photophysiological characteristics of phytoplankton and the optical characteristics of the instrument has been worked out. A physical method of determining chlorophyll a concentrations in seawater from fluorescence measured in situ with contact fluorometers can be based on this model.
Czasopismo
Rocznik
Strony
203--219
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences
  • Institute of Physics, Pedagogical University
autor
  • Department of Biophysics, Faculty of Biology, Moscow State University
autor
  • Institute of Oceanology, Polish Academy of Sciences
  • Institute of Physics, Pedagogical University
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland, ostra@iopan.gda.pl
Bibliografia
  • 1. Babin M., Morel A., Gentili B., 1996, Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence, J. Remote Sens., 17 (1), 2417-2448.
  • 2. Bristov M., Nielsen D., Bundy D., Furtek R., 1981, Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation, Appl. Opt., 20 (17), 2889-2906.
  • 3. Brown M., 1980, Standardization of natural water fluorescence intensity by Raman emission, Inst. Phys. Oceanogr., Copenhagen Univ., Copenhagen, 42, 29-38.
  • 4. Demidov A. A., Baulin E. V., Fadeyev V. V. Shur L. A., 1981, Using of laser spectrofluorometry for measuring marine phytoplankton pigments, Okeanologiya, 21, 174-179, (in Russian).
  • 5. Demidov A. A., Chekaluk A. M., Lapthenkova T. V., Fadeyev V. V., 1988, Remote laser monitoring of organic components of seawater from the ship’s side, Meteor. i Gidrol., 6, 62-70, (in Russian).
  • 6. Fadeyev V. V., Klyshko D. N., Rubin L. B., Tunkin B. G., Kharitonov L. A., Chekaluk A. M., Chubakov V. V., 1979, Analysis of water environments using fluorescence and combinative light scattering methods, [in:] Optics methods of ocean and internal waters, Izd. Nauka, Novorosyysk, 87-99, (in Russian).
  • 7. Grassl H. (ed.), 1986, The use of chlorophyll fluorescence measurements from space for separating constituents of seawater, GKSS Res. Centre Geesthacht, 1, 2, Geesthacht.
  • 8. Hulst van de H. C., 1981, Light scattering by small particles, Dover Pub. Inc., New York, 470 pp.
  • 9. Hundahl H., Holck J., 1989, A new ‘in situ’ fluorometer for detection of rhodamine B and chlorophyll, Inst. Phys. Oceanogr., Copenhagen Univ., Copenhagen, 42, 143-153.
  • 10. Jeffrey S.W., Humphrey G. F., 1975, New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochem. Physiol. Pfl., 167, 194-204.
  • 11. Karabashev G. S., 1987, Fluorescence in the ocean, Gidrometeoizdat, Leningrad, 200 pp., (in Russian).
  • 12. Kolber Z., Falkowski P. G., 1993, Use of active fluorescence to estimate phytoplankton photosynthesis ‘in situ’, Limnol. Oceanogr., 38 (8), 1646-1665.
  • 13. Loftus M. E., Seliger H. H., 1975, Some limitations of the ‘in vivo’ fluorescence technique, Chesapeake Sci., 16 (2), 79-92.
  • 14. Lorenzen C. F., 1966, A method for the continuous measurements of ‘in vivo’ chlorophyll concentration, Deep-Sea Res., 13, 223-227.
  • 15. Lorenzen C. F., 1967, Determination of chlorophyll and phaeopigments: spectrophotometric equations, Limnol. Oceanogr., 12, 343-346.
  • 16. Majchrowski R., Ostrowska M., 2000,Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • 17. Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191-202.
  • 18. Mitchell B. G., Kieffer D. A., 1988, Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton, Deep-Sea Res., 35 (5), 639-664.
  • 19. Neville R. A., Gower J. F. R, 1977, Passive remote sensing of phytoplankton via chlorophyll a fluorescence, J. Geophys. Res., 82, 3487-3493.
  • 20. Ostrowska M., 1990, Fluorescence ‘in situ’ method for the determination of chlorophyll a concentration in sea, Oceanologia, 29, 175-202.
  • 21. Ostrowska M., Darecki M., Woźniak B., 1997, Relationships between sun-induced chlorophyll a fluorescence and concentration in the Baltic Sea, Proc. SPIE, 3222, 528-537.
  • 22. Ostrowska M., Matorin D. N., Ficek D., 2000, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophyll a determination, Oceanologia, 42 (2), 221-229.
  • 23. Raimbault P., Slawyk P., Coste B., Fry J., 1990, Feasibility of using an automatic procedure for the determination of seawater nitrate in the 0–100 nm range: examples from field and culture, Mar. Biol., 104, 347-351.
  • 24. Shavykin A. A., 1990, Description of direct methods and means of determining chlorophyll fields in seawater, autopresentation AN SSSR, 18, Moskva, 38 pp., (in Russian).
  • 25. Shavykin A. A., Ryzhov B. M., 1989, Using of submersible fluorometers for investigating phytoplankton communities, AN SSSR, 45, Murmansk, 45 pp., (in Russian).
  • 26. Siwecki R., Kućmierz H., 1985, Application of the STD recorder in the measurements carried out during the cruise of r/v ‘Akademik M. Keldysh’, Stud. i Mater. Oceanol., 47, 271-281, (in Polish).
  • 27. Slovacek R. E., Hannan P. J., 1977, ‘In vivo’ fluorescence determinations of phytoplankton chlorophyll a, Limnol. Oceanogr., 22, (5), 919-925.
  • 28. Strickland J. D. H., Parsons T. R., 1968, A practical handbook of seawater analysis. Pigment analysis, Bull. Fish. Res. Bd. Can., 167, 1-311.
  • 29. Vedernikov V. I., Vshyntsev V. S., Demidov A. A., Pogosyan S. I., Sukhanova I. N., Fadeyev V. V., Chekaluk A. M., 1990, Using fluorometric and photometric methods for chlorophyll a studying in the Black Sea in spring 1988, Okeanologiya, 30, 848-854, (in Russian).
  • 30. Wood E. P. K., Armstrong A. J., Richards F. A., 1967, Determination of nitrate in seawater by cadmium cooper reduction to nitrite, J. Mar. Biol. Ass. U.K, 47, 23-31.
  • 31. Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.
  • 32. Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
  • 33. Woźniak B., Hapter R., Maj B., 1983, The inflow of solar energy and the irradiance of the euphotic zone in the region of Ezcurra Inlet during the Antarctic summer of 1977/78, Oceanologia, 15, 141-174.
  • 34. Woźniak B., Montwiłł K., 1973, Methods and techniques of optical measurements in the sea, Stud. i Mater. Oceanol., 7, 73-108, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.