PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model of the in vivo spectral absorption of algal pigments. Part 1. Mathematical apparatus

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Existing statistical models of in vivo light absorption by phytoplankton (Wozniak & Ostrowska 1990, Bricaud et al. 1995, 1998) describe the dependence of the phytoplankton specific spectral absorption coefficient a*pl() on the chlorophyll a concentration Ca in seawater. However, the models do not take into account the variability in this relationship due to phytoplankton acclimation. The observed variability in the light absorption coefficient and its components due to various pigments with depth and geographical position at sea, requires further accurate modelling in order to improve satellite remote sensing algorithms and interpretation of ocean colour maps. The aim of this paper is to formulate an improved model of the phytoplankton spectral absorption capacity which takes account of the pigment composition and absorption changes resulting from photo- and chromatic acclimation processes, and the pigment package effect. It is a synthesis of earlier models and the following statistical generalisations: (1) statistical relationships between various pigment group concentrations and light field properties in the sea (described by Majchrowski & Ostrowska 2000, this volume); (2) a model of light absorption by phytoplankton capable of determining the mathematical relationships between the spectral absorption coefficients of the various photosynthetic and photoprotecting pigment groups, and their concentrations in seawater (Wozniak et al. 1999); (3) bio-optical models of light propagation in oceanic Case 1 Waters and Baltic Case 2 Waters (Wozniak et al. 1992a,b, 1995a,b). The generalised model described in this paper permits the total phytoplankton light absorption coefficient in vivo as well as its components related to the various photosynthetic and photoprotecting pigments to be determined using only the surface irradiance PAR(0+) surface chlorophyll concentration Ca(0) and depth z in the sea as input data.
Czasopismo
Rocznik
Strony
177--190
Opis fizyczny
Bibliogr. 23 poz., tab.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences
  • Institute of Physics, Pedagogical University
autor
  • Institute of Oceanology, Polish Academy of Sciences
autor
  • Institute of Physics, Pedagogical University
  • Institute of Physics, Pedagogical University
autor
  • Institute of Oceanology, Polish Academy of Sciences
autor
  • Institute of Oceanology, Polish Academy of Sciences,
  • P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland, wozniak@iopan.gda.pl
Bibliografia
  • 1. Bricaud A., Babin M., Morel A., Claustre H., 1995, Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterisation, J. Geophys. Res., 100, 13321-13332.
  • 2. Bricaud A., Morel A., Babin M., Allali K., Claustre H., 1998, Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res., 103, 31033-31044.
  • 3. Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • 4. Gordon H. R., McCluney W. R., 1975, Estimation of the depth of sunlight penetration in the sea for remote sensing, Appl. Opt., 14, 413-417.
  • 5. Hulst van de H. C., 1981, Light scattering by small particles, Dover Pub. Inc., New York, 470 pp.
  • 6. Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea (Case 2 Waters), Oceanologia, 37 (2), 285-297.
  • 7. Lewis M. R., Cullen J. J., Platt T., 1983, Phytoplankton and thermal structure in the upper ocean: consequences of non-uniformity in the chlorophyll profile, J. Geophys. Res., 88, 2565-2570.
  • 8. Majchrowski R., 2000, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Ph. D. thesis, Inst. Oceanol. PAN, Sopot, (in Polish).
  • 9. Majchrowski R., Ostrowska M., 2000,Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • 10. Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
  • 11. Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191-202.
  • 12. Morel A., Berthon J. F., 1989, Surface pigments, algal biomass profiles and potential production of the euphotic layer: relationships re-investigated in view of remote sensing applications, Limnol. Oceanogr., 34 (8), 1545-1562.
  • 13. Morel A., Bricaud A., 1981, Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton, Deep-Sea Res., 28, 1375-1393.
  • 14. Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722.
  • 15. Platt T., Sathyendranath S., Cavarhill C. M., Lewis M. R., 1988, Ocean primary production and available light: further algorithms for remote sensing, Deep-Sea Res., 35 (6), 855-879.
  • 16. Sathyendranath S., Platt T., Cavarhill C. M., Warnock R. E., Lewis M. R., 1989, Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Res., 36 (3), 431-453.
  • 17. Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I, 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
  • 18. Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • 19. Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246-275.
  • 20. Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997, ‘IO PAS initial model’ of marine primary production for remote sensing application, Oceanologia, 39 (4), 377-395.
  • 21. Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995a, Algorithm for estimating primary production in the Baltic by remote sensing, Stud. i Mater. Oceanol., 68, 91-123.
  • 22. Woźniak B., Ostrowska M., 1990, Optical absorption properties of phytoplankton in various seas, Oceanologia, 29, 117-146.
  • 23. Woźniak B., Smekot-Wensierski W., Darecki M., 1995b, Semi-empirical modelling of backscattering and light reflection coefficients in WC1 seas, Stud. i Mater. Oceanol., 68, 61-90
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.