PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland) : a short-term pilot study. Part II. Driftline effects of succession changes and colonisation of beach fauna

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper evaluates the second part of a three-year field study to investigate the effects of the beach macro- and meiofauna community structure on the decay of stranded wrack on Hel Beach (see Jedrzejczak 2002), focusing on successional changes and the colonisation of wrack by beach fauna. The investigation enabled the associated faunal assemblages to be characterised. Zostera marina tissue was colonised by the supralittoral fauna in two distinct phases. The macrofauna, including the talitrid amphipod Talitrus saltator, adult Diptera and Coleoptera, colonised the wrack within a day, with maximum numbers being recorded after 3 days. Thereafter, their numbers in the samples declined and the meiofauna, consisting of nematodes, oligochaetes, turbellarians and dipteran larvae, became increasingly abundant. After 18 days, the wrack surface was dominated by meiofauna. This faunal succession was not directly related to the degradation of the seagrass tissue, which proceeded linearly throughout the study period. Exclusion of macrofauna from the wrack by the use of < 1 mm mesh litterbags had no appreciable effect on the rate of dry matter loss. Therefore, the major macrofaunal wrack consumers, including T. saltator and Coleoptera, did not affect the rate of seagrass disintegration. The effect of meiofaunal nematodes, oligochaetes, gastrotrichs and turbellarians on wrack breakdown could not be accurately determined. However, the development of the meiofaunal community suggested that changes in the fauna community were linked more closely to successional changes in the chemistry and/or microflora of the beach wrack than to its physical breakdown.
Czasopismo
Rocznik
Strony
367--387
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
  • Department of Environmental Chemistry and Ecotoxicology, Faculty of Chemistry, University of Gdańsk, Jana III Sobieskiego 18/19, PL-80-952 Gdańsk, Poland, humbak@idea.net.pl
Bibliografia
  • [1] Aloia A., Colombini I., Fallaci M., Pezzoli G., Chelazzi L., 1999, Behavioural adaptations to zonal maintenance of five species of tenebrionids living along a Tyrrhenian sandy shore, Mar. Biol., 133, 473-487.
  • [2] Bedford A. P., Moore P. G., 1984, Macrofaunal involvement in the sublittoral decay of kelp debris, Estuar. Coast. Shelf Sci., 18, 97-111.
  • [3] Behbehani M. J., Croker R. A., 1982, Ecology of beach wrack in northern New England with special reference to Orchestia platensis, Estuar. Coast. Shelf Sci., 15, 611-620.
  • [4] Brown A. C., McLachlan A., 1990, Ecology of sandy shores, Elsevier, Amsterdam, 328 pp.
  • [5] Colombini I., Aloia A., Fallaci M., Pezzoli G., Chelazzi L., 1998, Spatial use of an equatorial coastal system (East Africa) by an arthropod community in relation to periodically varying environmental conditions, Estuar. Coast. Shelf Sci., 47, 633-647.
  • [6] Colombini I., Aloia A., Fallaci M., Pezzoli G., Chelazzi L., 2000, Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach, Mar. Biol., 136, 531-541.
  • [7] Costello M. J., McGrath D., Emblow C., 1999, A review of the distribution of marine Talitridae (Amphipoda) in Ireland, including the results of a new survey of sandy beaches, [in:] Crustaceans and the biodiversity crisis, F. R. Schram & J. C. von Vaupel Klein (eds.), Brill, Leiden, 473-487.
  • [8] Dobson T., 1976, Seaweed flies (Diptera: Coelopidae, etc.), [in:] Marine insects, L. Cheng (ed.), North-Holland Publ. Co., Amsterdam, 447-464.
  • [9] Doyen J. T., 1976, Marine beetles (Coleoptera excluding Staphylinidae), [in:] Marine insects, L. Cheng (ed.), North-Holland Publ. Co., Amsterdam, 497-519.
  • [10] Fallaci M., Aloia A., Audoglio M., Colombini I., Scapini F., Chelazzi L., 1999, Differences in behavioural strategies between two sympatric talitrids (Amphipoda) inhabiting an exposed sandy beach of the French Atlantic coast, Estuar. Coast. Shelf Sci., 48 (4), 469-482.
  • [11] Gerlach S. A., 1977, Attraction to decaying organisms as a possible cause for patchy distribution of nematodes in a Bermuda beach, Ophelia, 16, 151-165.
  • [12] Giere O., 1975, Population structure, food relations and ecological role of marine oligochaetes, with special reference to meiobenthic species, Mar. Biol., 31, 139-156.
  • [13] Griffiths C. L., Stenton-Dozey J. M. E., 1981, The fauna and rate of degradation of stranded kelp, Estuar. Coast. Shelf Sci., 12, 645-653.
  • [14] Griffiths C. L., Stenton-Dozey J. M. E., Koop K., 1983, Kelp wrack and energy flow through a sandy beach, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 547-556.
  • [15] Haque A. M., Szymelfenig M., Węsławski J. M., 1996, The sandy littoral zoobenthos of the Polish Baltic coast, Oceanologia, 38 (3), 361-378.
  • [16] Haque A. M., Szymelfenig M., Węsławski J. M., 1997a, Small-scale vertical distribution of zoobenthos in the sandy littoral of the Gulf of Gdańsk, Oceanologia, 39 (4), 433-446.
  • [17] Haque A. M., Szymelfenig M., Węsławski J. M., 1997b, Spatial and seasonal changes in the sandy littoral zoobenthos of the Gulf of Gdańsk, Oceanologia, 39 (3), 299-324.
  • [18] Inglis G., 1989, The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach, J. Exp. Mar. Biol. Ecol., 125, 203-217.
  • [19] Jędrzejczak M. F., 1999, The degradation of stranded carrion on a Baltic Sea sandy beach, Oceanol. Stud., 28 (3)-(4), 109-141.
  • [20] Jędrzejczak M. F., 2002, Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates, Oceanologia, 44 (2), 273-286.
  • [21] Kaczorowska E., 2001a (unpubl.), Diptera of Baltic Sea and saltmarshes of the Gulf of Gdańsk, Proc. 44th Congr. Polish Entomol. Assoc., (in Polish).
  • [22] Kaczorowska E., 2001b (unpubl.), Diptera of the Gulf of Gdańsk, Proc. 20th Congr. Polish Entomol. Assoc., Dipteron, 17, 16-19, (in Polish).
  • [23] Kaczorowska E., 2001c (unpubl.), Fucellia tergina (Zetterstedt) (Anthomyiidae) – denizen of the Gulf of Gdańsk, Proc. 20th Congr. Polish Entomol. Assoc., Dipteron, 17 (15), (in Polish).
  • [24] Kaczorowska E., 2001d (unpubl.), The anthomyiid flies (Diptera: Anthomyiidae) of the Gulf of Gdańsk, Proc. 3rd Int. Symp. ‘Functioning of coastal ecosystems in various geographical regions’, Abstract book No. 43, Gdynia.
  • [25] Koop K., Field J. G., 1980, The influence of food availability on population dynamics of a supralittoral isopod, J. Exp. Mar. Biol. Ecol., 48, 61-72.
  • [26] Koop K., Griffiths C. L., 1982, The relative significance of bacteria, meio- and macrofauna on an exposed sandy beach, Mar. Biol., 66, 295-300.
  • [27] Koop K., Lucas M. I., 1983, Carbon flow and nutrient regeneration from the decomposition of macrophyte debris in a sandy beach microcosm, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 249-262.
  • [28] Koop K., Newell R. C., Lucas M. I., 1982, Biodegradation and carbon flow based on kelp debris (Ecklonia maxima) in a sandy beach microcosm, Mar. Ecol. Prog. Ser., 7, 315-326.
  • [29] Kotwicki L., 1997, Macrozoobenthos of the sandy littoral zone of the Gulf of Gdańsk, Oceanologia, 39 (4), 447-460.
  • [30] Kotwicki L., Włodarska-Kowalczuk M., Wieczorek P., 1999, Macrozoobenthos of the sandy littoral zone in the military area between Hel and Jurata, Oceanol. Stud., 28 (3)-(4), 97-107.
  • [31] Lenanton R. C. J., Robertson A. I., Hansen J. A., 1982, Nearshore accumulations of detached macrophytes as nursery areas for fish, Mar. Ecol. Prog. Ser., 9, 51-57.
  • [32] Marsden I. D., 1991a, Kelp-sandhopper interactions on a sand beach in New Zealand. I. Drift composition and distribution, J. Exp. Mar. Biol. Ecol., 152, 61-74.
  • [33] Marsden I. D., 1991b, Kelp-sandhopper interactions on a sand beach in New Zealand. II. Population dynamics of Talorchestia quoyana (Milne-Edwards), J. Exp. Mar. Biol. Ecol., 152, 75-90.
  • [34] McLachlan A., 1983, Sandy beach ecology – a review, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 321-380.
  • [35] Moore I., Legner E. F., 1976, Intertidal rove beetles (Coleoptera: Staphylinidae), [in:] Marine insects, L. Cheng (ed.), North-Holland Publ. Co., Amsterdam, 521-551.
  • [36] Nardi M., Persson L. E., Scapini F., 2000, Diel variation of visual response in Talitrus saltator and Talorchestia deshayesii (Crustacea: Amphipoda) from high latitude beaches of low tidal amplitude, Estuar. Coast. Shelf Sci., 50 (3), 333-340.
  • [37] Olańczuk-Neyman K., Jankowska K., 1998, Bacteriological investigations of the sandy beach ecosystem in Sopot, Oceanologia, 40 (2), 137-151.
  • [38] Persson L. E., 2001, Dispersal of Platorchestia platensis (Kröyer) (Amphipoda: Talitridae) along Swedish coasts: a slow but successful process, Estuar. Coast. Shelf Sci., 52 (2), 201-210.
  • [39] Robertson A. I., Mann K., 1980, The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada, Mar. Biol., 59, 63-69.
  • [40] Scapini F., 1997, Variation in scototaxis and orientation adaptation of Talitrus saltator populations subjected to different ecological constraints, Estuar. Coast. Shelf Sci., 44 (2), 139-146.
  • [41] Simpson K. W., 1976, Shore flies and brine flies (Diptera: Ephydridae), [in:] Marine insects, L. Cheng (ed.), North-Holland Publ. Co., Amsterdam, 465-496.
  • [42] Stenton-Dozey J. M. E., Griffiths C. L., 1980, Growth, consumption and respiration by larvae of the kelp-fly Fucellia capensis (Diptera: Anthomyiidae), S. African J. Zool., 15, 280-283.
  • [43] Stenton-Dozey J. M. E., Griffiths C. L., 1983, The fauna associated with kelp stranded on a sandy beach, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 557-568.
  • [44] Szadziewski R., 1983, Flies (Diptera) of the saline habitats of Poland, Pol. Pismo Entomol., 53, 31-76.
  • [45] Urban-Malinga B., Opaliński K. W., 1999, Total, biotic and abiotic oxygen consumption in a Baltic sandy beach: horizontal zonation, Oceanol. Stud., 28 (3)-(4), 85-96.
  • [46] Urban-Malinga B., Opaliński K. W., 2001, Interstitial community oxygen consumption in a Baltic sandy beach: horizontal zonation, Oceanologia, 43 (3), 455-468.
  • [47] Wachendorf C., Irmler U., Blume H. P., 1997, Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions, [in:] Plant litter quality and decomposition. Driven by nature, G. Cadish & K. E. Giller (eds.), CAB International, Wallingford, 135-144.
  • [48] Węsławski J. M., Kupidura T., Żabicki M., 2000a, Sandhoppers, Talitrus saltator (Montague, 1808) (Amphipoda, Gammaridea), at the Polish Baltic coast: seasonal and spatial distribution patterns, Crustaceana, 73 (8), 961-969.
  • [49] Węsławski J. M., Stanek A., Siewert A., Beer N., 2000b, The sandhopper (Talitrus saltator, Montague 1808) on the Polish Baltic coast. Is it a victim of increased tourism?, Oceanol. Stud., 29 (1), 77-87.
  • [50] Williams S. L., 1984, Decomposition of the tropical macroalga Caulerpa cupressoides (West) C. Agardh.: field and laboratory studies, J. Exp. Mar. Biol. Ecol., 80, 109-124.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.