PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland) : a short-term pilot study. Part I. Driftline effects of fragmented detritivory, leaching and decay rates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of the beach community structure of macro- and meiofauna on the process of beach wrack decay were investigated by means of a simple field colonisation experiment in a temperate, fine quartz sediment, sandy beach at the end of the Hel Peninsula in Poland. 1260 replicate litterbags of three mesh sizes (12 mm, 0.5 mm, 48 žm) containing fresh wrack were used to assess the role of faunal and non-faunal components in the breakdown of stranded Zostera marina. Wrack breakdown was determined during a three-year field study. This paper presents the first part of the results of this field experiment, which refer to the effects of fragmentation detritivory, leaching and decay rates. Material was lost from the bags at a rapid rate, with only 22-32% of the original dry mass remaining after 27 days in the field. This degradation was not directly related to the faunal succession of the eelgrass tissue, which proceeded in two distinct phases throughout the study period. Exclusion of macrofauna from the wrack by the use of finer-mesh litterbags (< 1 mm) had no appreciable effect on the rate of dry matter loss. Microbial decay, and abiotic leaching and fragmentation are probably the major causes of seagrass weight loss from the litterbags.
Czasopismo
Rocznik
Strony
273--286
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
  • Department of Environmental Chemistry and Ecotoxicology, Faculty of Chemistry, University of Gdańsk, Jana III Sobieskiego 18/19, PL-80-952 Gdańsk, Poland, humbak@idea.net.pl
Bibliografia
  • [1] Bedford A. P., Moore P. G., 1984, Macrofaunal involvement in the sublittoral decay of kelp debris, Estuar. Coast. Shelf Sci., 18, 97-111.
  • [2] Berzins I. K., 1985, The dynamics of beach wrack invertebrate communities: an evaluation of habitat use patterns, University of California, Berkeley.
  • [3] Blum L. K., 1993, Spartina alterniflora root dynamics in a Virginia marsh, Mar. Ecol. Prog. Ser., 102, 169-178.
  • [4] Brown A. C., McLachlan A., 1990, Ecology of sandy shores, Elsevier, Amsterdam, 328 pp.
  • [5] Colombini I., Aloia A., Fallaci M., Pezzoli G., Chelazzi L., 2000, Temporal and spatial use of stranded wrack by the macrofauna of a tropical sandy beach, Mar. Biol., 136, 531-541.
  • [6] Gallagher J. L., Kibby H. V., Kirvin K. W. S., 1984, Detritus processing and mineral cycling in seagrass (Zostera) litter in an Oregon saltmarsh, Aquatic Bot., 20, 97-108.
  • [7] Griffiths C. L., Stenton-Dozey J. M. E., Koop K., 1983, Kelp wrack and energy flow through a sandy beach, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 547-556.
  • [8] Hackney C. T., 1987, Factors affecting accumulation or loss of macroorganic matter in salt marsh sediments, Ecology, 68, 1109-1113.
  • [9] Hackney C. T., de la Cruz A. A., 1980, ‘In situ’ decomposition of roots and rhizomes of two tidal marsh plants, Ecology, 61, 226-231.
  • [10] Harrison P. G., 1977, Decomposition of macrophyte detritus in seawater: effects of grazing by amphipods, Oikos, 28, 165-170.
  • [11] Harrison P. G., 1989, Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory, Aquatic Bot., 23, 263-288.
  • [12] Harrison P. G., Mann K. H., 1975a, Chemical changes during the seasonal cycle of growth and decay in eelgrass (Zostera marina) on the Atlantic coast of Canada, J. Fish. Res. Bd Can., 32, 615-621.
  • [13] Harrison P. G., Mann K. H., 1975b, Detritus formation from eelgrass (Zostera marina): the relative effects of fragmentation, leaching and decay, Limnol. Oceanogr., 20, 924-934.
  • [14] Inglis G., 1989, The colonisation and degradation of stranded Macrocystis pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach, J. Exp. Mar. Biol. Ecol., 125, 203-217.
  • [15] Jenny H., Gessel S. P., Bringham F. T., 1949, Comparative study of decomposition rates of organic matter in temperate and tropical regions, Soil Sci., 68, 419-432.
  • [16] Jędrzejczak M. F., 1999, The degradation of stranded carrion on a Baltic Sea sandy beach, Oceanol. Stud., 28 (3)-(4), 109-141.
  • [17] Josselyn J. M., Mathieson A. C., 1980, Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary, Hydrobiologia, 71, 197-208.
  • [18] Kenworthy W. J., Thayer G. W., 1984, Production and decomposition of the roots and rhizomes of seagrasses, Zostera marina and Thalassia testudinum, in temperate and subtropical marine ecosystems, Bull. Mar. Sci., 35, 364-379.
  • [19] Koop K., Lucas M. I., 1983, Carbon flow and nutrient regeneration from the decomposition of macrophyte debris in a sandy beach microcosm, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 249-262.
  • [20] Lenanton R. C. J., Robertson A. I., Hansen J. A., 1982, Nearshore accumulations of detached macrophytes as nursery areas for fish, Mar. Ecol. Prog. Ser., 9, 51-57.
  • [21] Massel S. R., 2001, Circulation of groundwater due to wave set-up on a permeable beach, Oceanologia, 43 (3), 279-290.
  • [22] McLachlan A., 1983, Sandy beach ecology – a review, [in:] Sandy beaches as ecosystems, A. McLachlan & T. Erasmus (eds.), W. Junk, The Hague, 321-380.
  • [23] McLachlan A., McGwynne L. E., 1986, Do sandy beaches accumulate nitrogen?, Mar. Ecol. Prog. Ser., 34, 191-195.
  • [24] Newell S. Y., Fell J. W., Statzell-Tallman A., Miller C., Cefalu R., 1984, Carbon and nitrogen dynamics in decomposing leaves of three coastal marine vascular plants of the subtropics, Aquatic Bot., 19, 183-192.
  • [25] Pelikaan G. C., 1984, Laboratory experiments on eelgrass (Zostera marina) decomposition, Neth. J. Sea Res., 18, 360-383.
  • [26] Robertson A. I., Mann K., 1980, The role of isopods and amphipods in the initial fragmentation of eelgrass detritus in Nova Scotia, Canada, Mar. Biol., 59, 63-69.
  • [27] Swift J. M., Heal O. W., Anderson J. M., 1979, Decomposition in terrestrial ecosystems. Studies in Ecology Vol. 5, Blackwell Sci. Publ., Oxford, 372 pp.
  • [28] Tenore K. R., Hanson R. B., McClain J., Maccubbin J., Hodson R. E., 1984, Changes in the composition and nutritional value to benthic deposit feeder of decomposing detritus pools, Bull. Mar. Sci., 35 (3), 299-311.
  • [29] Urban-Malinga B., Opaliński K. W., 1999, Total, biotic and abiotic oxygen consumption in a Baltic sandy beach: horizontal zonation, Oceanol. Stud., 28 (3)-(4), 85-96.
  • [30] Urban-Malinga B., Opaliński K. W., 2001, Interstitial community respiration in a Baltic sandy beach: horizontal zonation, Oceanologia, 43 (4), 455-468.
  • [31] Valiela I., Teal J. M., Allen S. D., Van Etten R., Goehringer D., Volkmann S., 1985, Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter, J. Exp. Mar. Biol. Ecol., 89, 29-54.
  • [32] Wachendorf C., Irmler U., Blume H. P., 1997, Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions, [in:] Plant litter quality and decomposition. Driven by nature, G. Cadish & K. E. Giller (eds.), CAB International, Wallingford, 135-144.
  • [33] Węsławski J. M., Urban-Malinga B., Kotwicki L., Opaliński K. W., Szymelfenig M., Dutkowski M., 2000, Sandy coastlines – are there conflicts between recreation and natural values?, Oceanol. Stud., 29 (2), 5-18.
  • [34] Wieder R. K., Lang G. E., 1982, A critique of the analytical methods used in examining decomposition data obtained from litter bags, Ecology, 63, 1636-1642.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.