PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two models for absorption by coloured dissolved organic matter (CDOM)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The standard exponential model for CDOM absorption has been applied to data from diverse waters. Absorption at 440 nm (ag440) ranged between close to zero and 10 m-1, and the slope of the semilogarithmic absorption spectrum over a minimum range of 400 to 440 nm (s440) ranged between < 0.01 and 0.04 nm-1. No relationship was found between ag440 or s440 and salinity. Except in the southern Baltic, s440 was found to have a broad distribution (0.0165 š 0.0035), suggesting that it should be introduced as an additional variable in bio-optical models when ag440 is large. An alternative model for CDOM absorption was applied to available high quality UV-visible absorption spectra from the Wisla river (Poland). This model assumes that the CDOM absorption spectrum comprises distinct Gaussian absorption bands in the UV, similar to those of benzene. Five bands were fit to the data. The mean central energy of all bands was higher in early summer (E~7.2, 6.6, 6.4, 6.2 and 5.5 eV or 172, 188, 194, 200 and 226 nm) than in winter. The higher energy bands were found to decay in both height and width with increasing salinity, while lower energy bands broadened with increasing salinity. s440 was found to be correlated with shape parameters of the bands centred at 6.4 and 5.5 eV. While the exponential model is convenient for optical modelling and remote sensing applications, these results suggest that the Gaussian model offers a deeper understanding of chemical interactions affecting CDOM molecular structure.
Słowa kluczowe
Czasopismo
Rocznik
Strony
209--241
Opis fizyczny
Bibliogr. 80 poz., rys., tab., wykr.
Twórcy
  • Remote Sensing Technology Institute, German Aerospace Centre, Rutherfordstr. 2, 12489 Berlin, Germany
  • Alfred Wegener Institute for Polar & Marine Research, Postfach 12 0161, 27515 Bremerhaven, Germany
autor
  • Institute of Oceanology, PAS, Powstańców Warszawy 55, 81-712 Sopot, Poland, P.O. Box 68
autor
  • Institute of Oceanology, PAS, Powstańców Warszawy 55, 81-712 Sopot, Poland, P.O. Box 68
autor
  • Center for Coastal Physical Oceanography, Old Dominion University, 768W 52nd Street, Norfolk, VA 23508, USA
  • Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0218, USA
autor
  • Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0218, USA
autor
  • Monterey Bay Aquarium, Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039-9644, USA
  • Dept. Physics & Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, U.K.
autor
  • Dept. Physics & Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, U.K.
autor
  • Remote Sensing Technology Institute, German Aerospace Centre, Oberpfaffenhofen, 82234 Wessling, Germany
autor
  • RIKEN - The Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
  • Bigelow Laboratory for Ocean Sciences, 180 McKown Point Road, P.O. Box 475, West Boothbay Harbor, ME 04575, USA
autor
  • Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland
Bibliografia
  • [1] Aas E., 2000, Spectral slope of yellow substance: problems caused by small particles, Proc. Ocean Optics XV, Monaco, 16-20 October 2000.
  • [2] Aguirre-Gomez R., Weeks A. R., Boxall S. R., 2001, The identification of phytoplankton pigments from absorption spectra, Int. J. Remote Sens., 22 (2-3), 315-338.
  • [3] Ashley J. T. F., 1996, Adsorption of Cu (II) and Zn (II) by estuarine, riverine and terrestrial humic acids, Chemosphere, 33 (11), 2175-2187.
  • [4] Barnard A. H., Pegau W. S., Zaneveld J. R. V., 1998, Global relationships of the inherent optical properties of the oceans, J. Geophys. Res., 103 (C11), 24955-24968.
  • [5] Barnard A. H., Zaneveld J. R. V., Pegau W. S., 1999, ‘In situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion, Appl. Opt., 38 (24), 5108-5117.
  • [6] Barnes R., Clark D. K., Esaias W. E., Fargion G. S., Feldman G. C., McClain C. R., 2001, Development of a consistent multi-sensor global ocean color time series, Proc. Int. Workshop on Geo-Spatial Knowledge Processing for Natural Resource Management, University of Insubria, Varese, Italy, 28-29 June 2001, 13-28.
  • [7] Benner R., Opsahl S., 2001, Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume, Org. Geochem., 32, 597-611.
  • [8] Blough N. V., Zafiriou O. C., Bonilla J., 1993, Optical absorption spectra of waters from the Orinoco River outflow: terrestrial input of coloured organic matter to the Caribbean, J. Geophys. Res., 98 (C2), 2271-2278.
  • [9] Bowers D. G., Harker G. E. L., Smith P. S. D., Tett P., 2000, Optical properties of a region of freshwater influence (the Clyde Sea), Estuar. Coast. Shelf Sci., 50, 717-726.
  • [10] Bricaud A., Morel A., Prieur L., 1981, Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains, Limnol. Oceanogr., 26 (1), 43-53.
  • [11] Carder K. L., Chen F. R., Lee Z. P., Hawes S. K., Kamykowski D., 1999, Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures, J. Geophys. Res., 104 (C3), 5403-5421.
  • [12] Carder K. L., Steward R. G., Harvey G. R., Ortner P. B., 1989, Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll, Limnol. Oceanogr., 34 (1), 68-81.
  • [13] Carpenter S. R., Cole J. J., Kitchell J. F., Pace M. L., 1998, Impact of dissolved organic carbon, phosphorus and grazing on phytoplankton biomass and production in experimental lakes, Limnol. Oceanogr., 43 (1), 73-80.
  • [14] Darecki M., Weeks A. R., Sagan S., Kaczmarek S., Kowalczuk P., 2000, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Continental Shelf Res., (submitted).
  • [15] de Haan H., Werlemark G., de Boer T., 1983, Effect of pH on molecular weight and size of fulvic acids in drainage water from peaty grassland in NW Netherlands, Plant. Soil, 75, 63-73.
  • [16] Doerffer R., Fischer J., 1994, Concentrations of chlorophyll, suspended matter and CDOM in case II waters derived from satellite Coastal Zone Color Scanner data with inverse modelling methods, J. Geophys. Res.-Oceans, 99 (C4), 7457-7466.
  • [17] Fargion G. S., McClain C. R., 2001, SIMBIOS Project 2000 Annual Report, NASA TM 2001-209976, Greenbelt, Maryland, Goddard Space Flight Centre, 164 pp.
  • [18] Ferrari G. M., Dowell M., Grossi S., Targa C., 1996, Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region, Mar. Chem., 55, 299-316.
  • [19] Findlay S., Sinsabaugh R. L., 1999, Unravelling the sources and bioavailability of dissolved organic matter in lotic aquatic ecosystems, Mar. Freshwat. Res., 50, 781-790.
  • [20] Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., Delille B., Libert E., Théate J-M., 1998, Carbon dioxide emission from European estuaries, Science, 282, 434-436.
  • [21] French C. S., Brown J. S., Prager L., Lawrence M. C., 1967, Analysis of spectra of natural chlorophyll complexes, Carnegie Inst. Washington, Yearb., 67, 536-546.
  • [22] Garver S. A., Siegel D. A., 1997, Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea, J. Geophys. Res., 102 (C8), 18,607-18,625.
  • [23] Gege, P., 2000, Gaussian model for yellow substance absorption spectra, Proc. Ocean Optics XV, Monaco 16-20 October 2000.
  • [24] Ghosh K., Schnitzer M., 1979, UV and visible absorption spectroscopic investigations in relation to macromolecular characteristics of humic substances, J. Soil Sci., 30, 735-745.
  • [25] Green S. A., Blough N. V., 1994, Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters, Limnol. Oceanogr., 39 (8), 1903-1916.
  • [26] Gross L., Thiria S., Frouin R., Mitchell B. G., 2000, Artificial neural networks for modelling the transfer function between marine reflectance and phytoplankton pigment concentration, J. Geophys. Res., 105 (C2), 3483-3495.
  • [27] Grzybowski W., 2000, Effect of short-term sunlight irradiation on absorbance spectra of chromophoric organic matter dissolved in coastal and riverine water, Chemosphere, 40, 1313-1318.
  • [28] Harvey H. R., Mannino A., 2001, The chemical composition and cycling of particulate and macromolecular dissolved organic matter in temperate estuaries as revealed by molecular organic tracers, Org. Geochem., 32, 527-542.
  • [29] Hedges J. I., Eglinton G., Hatcher P. G., et al., 2000, The moleculary-uncharacterised component of nonliving organic matter in natural environments, Org. Geochem., 31, 945-958.
  • [30] Hedges J. I., Keil R. G., 1999, Organic geochemical perspectives on estuarine processes: sorption reactions and consequences, Mar. Chem., 65, 55-65.
  • [31] Hedges J. I., Keil R. G., Benner R., 1997, What happens to terrestrial organic matter in the ocean?, Org. Geochem., 27 (5/6), 195-212.
  • [32] Hoepffner N., Sathyendranath S., 1993, Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter, J. Geophys. Res.-Oceans, 98 (C12), 22789-22803.
  • [33] Højerslev N. K., Aas E., 2001, Spectral light absorption by yellow substance in the Kattegat-Skagerrak area’, Oceanologia, 43 (1), 39-60.
  • [34] Holder Sandvik S. L., Bilski P., Pakulski J. D., Chignell C. F., Coffin R. B., 2000, Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya River plumes, Mar. Chem., 69, 139-152.
  • [35] Jerlov N. G., 1957, A transparency-meter for ocean water, Tellus, 9, 229-233.
  • [36] Kahru M., Mitchell B. G., 2001, Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current, J. Geophys. Res.-Oceans, 106 (C2), 2517-2529.
  • [37] Kalle K., 1966, The Problem of Gelbstoff in the Sea, Oceanogr. Mar. Biol. Ann. Rev., 4, 91-104.
  • [38] Kirk J. T. O., 1994, Light and photosynthesis in aquatic ecosystems, 2nd edn., Cambridge University Press, New York, 509 pp.
  • [39] Korshin G. V., Chi-Wang L., Benjamin M. M., 1997, Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory, Water Res., 31 (7), 1787-1795.
  • [40] Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30,047-30,058.
  • [41] Kowalczuk P., 2001, Yellow substance absorption in the Baltic Sea, PhD Thesis, Inst. Oceanol. PAN, Sopot, 141 pp., (in Polish).
  • [42] Krawczyk H., Neumann A., Hetscher M., 1999, Principal Component Inversion – Physical and mathematical background, Proc. 3rd Int. Workshop on MOS-IRS and Ocean Colour, Berlin, 21-23 April 1999: Wissenschaft und Technik Verlag.
  • [43] Lee Z. P., Carder K. L., Mobley C. D., Steward R. G., Patch J. S., 1999, Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization, Appl. Opt., 38 (18), 3831-3843.
  • [44] Lee Z. P., Carder K. L., Steward R. G., Peacock T. G., Davis C. O., Patch J. S., 1998, An empirical algorithm for light absorption by ocean water based on color, J. Geophys. Res., 103 (C12), 27,967-27,978.
  • [45] Loisel H., Stramski D., Mitchell B. G., Fell F., Fournier-Sicre V., Lemasle B., Babin M., 2001, Comparison of the ocean inherent optical properties obtained from measurements and inverse modeling, Appl. Opt., 40 (15), 2384-2397.
  • [46] Łysiak-Pastuszak E., 2000, An assessment of nutrient conditions in the southern Baltic Sea between 1994 and 1998, Oceanologia, 42 (4), 425-448, (www.iopan.gda.pl/oceanologia).
  • [47] McCarthy M., Pratum T., Hedges J., Benner R., 1997, Chemical composition of dissolved nitrogen in the ocean, Nature, 390, 150-153.
  • [48] McClain C. R., Fargion G. S., 1999a, SIMBIOS Project 1998 Annual Report, NASA TM 1999-208645, Greenbelt, Maryland, Goddard Space Flight Centre, 128 pp.
  • [49] McClain C. R., Fargion G. S., 1999b, SIMBIOS Project Annual Report, NASA TM 1999-209486, Greenbelt, Maryland, Goddard Space Flight Centre, 128 pp.
  • [50] Mitchell B. G., Bricaud A., Carder K., Cleveland J., et al., 2000, Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples, [in:] Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revision 2, G. S. Fargion & J. L. Mueller (eds.), NASA/TM-2000-209966, Greenbelt, Maryland, Goddard Space Flight Centre, 125-153.
  • [51] Mopper K., Feng Z., Bentjen S. B., Chen R. F., 1996, Effects of cross-flow filtration on the absorption and fluorescence properties of seawater, Mar. Chem., 55, 53-74.
  • [52] Moran M. A., Sheldon Jr W. M., Zepp R. G., 2000, Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45 (6), 1254-1264.
  • [53] Mueller J. L., Austin R. W., 1995, Ocean Optics Protocols for SeaWiFS Validation. Revision 1, NASA TM-104566, Vol. 25, S. B. Hooker, E. R. Firestone & J. G. Acker (eds.), NASA Goddard Space Flight Centre, Greenbelt, Maryland, 67 pp.
  • [54] Neale P. J., Cullen J. J., Davis R. F., 1998, Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring, Limnol. Oceanogr., 43 (3), 433-448.
  • [55] Nelson N. B., Siegel D. A., Michaels A. F., 1998, Seasonal dynamics of colored dissolved material in the Sargasso Sea, Deep-Sea Res. Pt I, 45, 931-957.
  • [56] Nyquist G., 1979, Investigation of some optical properties of sea water with special reference to lignin sulfonates and humic substances, PhD Thesis, Dept. Analytical and Marine Chemistry, Göteborg University, Göteborg, Sweden, 203 pp.
  • [57] Okami N., Kishino M., Sugihara S., Takematsu N., Unoki S., 1982, Analysis of Ocean Color Spectra (III) – Measurements of Optical Properties of Sea Water, J. Oceanogr. Soc. Jap., 38, 362-372.
  • [58] O’Reilly J. E., Maritorena S., Mitchell B. G., Siegel D. A., Carder K. L., Garver S. A., Kahru M., McClain C., 1998, Ocean color chlorophyll algorithms for SeaWiFS, J. Geophys. Res., 103 (C11), 24,937-24,953.
  • [59] Pages J., Gadel F., 1990, Dissolved organic matter and UV absorption in a tropical hyperhaline estuary, Sci. Total Environm., 99, 173-204.
  • [60] Patel N., Mounier S., Guyot J. L., Benamou C., Benaim J. Y., 1999, Fluxes of dissolved and colloidal organic carbon, along the Purus and Amazonas rivers (Brazil), Sci. Total Environm., 229, 53-64.
  • [61] Pegau W. S., Zaneveld J. R. V., Barnard A. H., Maske H., Alvarez-Borrego S., Lara-Lara R., Cervantes-Duarte R., 1999, Inherent optical properties in the Gulf of California, Cienc. Mar., 25 (4), 469-485.
  • [62] Pempkowiak J., 1988, The distribution,origin and properties of humic acids in the Baltic Sea, Ossolineum, Wrocław, 146 pp., (in Polish).
  • [63] Raymond P. A., Bauer J. E., 2001, Use of 14C and 13C natural abundances for evaluating riverine, estuarine and coastal DOC and POC sources and cycling: a review and synthesis, Org. Geochem., 32, 469-485.
  • [64] Reynolds R. A., Stramski D., Mitchell B. G., 2001, A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean, J. Geophys. Res.-Oceans, 106 (C4), 7125-7138.
  • [65] Rozan T. F., Luther III G. W., 2002, An anion chromatoraphy/ultraviolet detection method to determine nitrite, nitrate and sulfide concentrations in saline (pore) waters, Mar. Chem., 77, 1-6.
  • [66] Schiller H., Doerffer R., 1999, Neural network for emulation of an inverse model – operational derivation of Case II water properties from MERIS data, Int. J. Remote Sens., 20 (9), 1735-1746.
  • [67] Siegel H., Gerth M., Neumann T., Doerffer R., 1999, Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Color Scanner data, Int. J. Remote Sens., 20 (7), 1249-1264.
  • [68] Smith R. C., Baker K. S., 1981, Optical properties of the clearest natural waters, Appl. Opt., 20, 177-184.
  • [69] Spitzy A., Ittekkot V., 1986, Gelbstoff: an uncharachterized fraction of dissolved organic carbon, [in:] The influence of yellow substances on remote sensing of sea-water constituents from space,vol. II: Appendices, GKSS Res. Centre Geesthacht, ESA Contract No. RFQ 3-5060/84/NL/MD, December 1986.
  • [70] Stewart A. J., Wetzel R. G., 1981, Asymmetrical relationships between absorbance, fluorescence and dissolved organic carbon, Limnol. Oceanogr., 26 (3), 590-597.
  • [71] Stramska M., Stramski D., Mitchell B. G., Mobley C. D., 2000, Estimation of the absorption and backscattering coefficients from in-water radiometric measurements, Limnol. Oceanogr., 45 (3), 628-641.
  • [72] Summers R. S., Roberts P. V., 1988, Activated carbon adsorption of humic substances: 1. Heterodisperse mixtures and desorption, J. Colloid Interface Sci., 122 (2), 367-381.
  • [73] Tassan S., 1994, Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment and yellow substance in coastal waters, Appl. Opt., 33 (12), 2369-2378.
  • [74] Thingstad T. F., Hagström Å., Rassoulzadegan F., 1997, Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop?, Limnol. Oceanogr., 42 (2), 398-404.
  • [75] Twardowski M. S., Donaghay P. L., 2001, Separating in situ and terrigenous sources of absorption by dissolved materials in coastal waters, J. Geophys. Res., 106 (C2), 2545-2560.
  • [76] Twardowski M. S., Sullivan J. M., Donaghay P. L., Zaneveld J. R. V., 1999, Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an AC-9, J. Atmos. Ocean. Technol., 16 (6), 691-707.
  • [77] Warnock R. E., Gieskes W. W. C., van Laar S., 1999, Regional and seasonal differences in light absorption by yellow substance in the Southern Bight of the North Sea, J. Sea Res., 42, 169-178.
  • [78] Werdell P. J., Bailey S., Fargion G. S., 2000, SeaBASS data protocols and policy, [in:] Ocean Optics Protocols for Ocean Color Sensor Validation. Revision 2, NASA TM 2000-209966, Greenbelt, Maryland, NASA Goddard Space Flight Centre, 170-172.
  • [79] Woźniak B., 1995, Absorption of radiation by components of sea water, [in:] Light in the sea: the primary interaction, J. Dera & A. Zieliński, Rep. Inst. Oceanol. PAN, Sopot, (in Polish).
  • [80] Zweifel U. L., 1999, Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga, Estuar. Coast. Shelf Sci., 48, 357-370.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.