PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical studies of the influence of food ingestion on phytoplankton and zooplankton biomasses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the numerical simulations of the influence of food ingestion by a herbivorous copepod on phytoplankton and zooplankton biomasses (PZB) in the sea. The numerical studies were carried out using the phytoplankton-zooplankton-nutrient-detritus PhyZooNuDe biological upper layer model. This takes account both of fully developed primary production and regeneration mechanisms and of daily migration of zooplankton. In this model the zooplankton is treated not as a 'biomass' but as organisms having definite patterns of growth, reproduction and mortality. Assuming also that {Zoop} is composed ofi cohorts of copepods with weights Wi and numbers Zi, then {Zoop} ΣWiZi. The PhyZooNuDe model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton, zooplankton and nutrients, and one ordinary first-order differential equation for the benthic detritus pool, together with initial and boundary conditions. The calculations were made during 90 days (April, May and June) for the study area P1 (Gdansk Deep) in an area 0<=z<=20 m with a vertical space step of 0.1 m and a time step of 300 s. The simulation given here demonstrated the importance of food ingestion by zooplankton in that it can alter the nature of the interactions of plants and herbivores. The analysis of these numerical studies indicate that the maximal ingestion rate and the half-saturation constant for grazing strongly affect the magnitude of the spring bloom and the cyanobacterial bloom, and also the total zooplankton biomass.
Czasopismo
Rocznik
Strony
81--110
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland, dzierzb@iopan.gda.pl
Bibliografia
  • [1] Billen G., Lancelot C., Maybeck M., 1991, N, P and Si retention along the aquatic continuum from land to ocean, [in:] Ocean margin processes in global change, R. F. C. Mantoura, J. M. Martin, R. Wollast (eds.), Physical, Chemical and Earth Sci. Res. Report No. 9, Wiley & Sons, New York, 19-44.
  • [2] Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes in the upper layer of the sea, Rozp. i monogr. 13/2000, Inst. Oceanol. PAS, Sopot, 124 pp., (in Polish).
  • [3] Dzierzbicka-Głowacka L., 2001, The PhyZooNuDe biological upper layer model, Oceanol. Acta, (in press).
  • [4] Dzierzbicka-Głowacka L., Zieliński A., 1997a, Numerical studies of the nutrient regeneration mechanism on the chlorophyll a concentration in a stratified sea, Oceanologia, 39 (1), 55-82.
  • [5] Dzierzbicka-Głowacka L., Zieliński A., 1997b, Numerical studies of the influence of the benthic detritus pool on the chlorophyll a concentration in a stratified sea, Oceanologia, 39 (4), 339-376.
  • [6] Dzierzbicka-Głowacka L., Zieliński A., 1998a, An algorithm for calculating the concentration of phytoplankton in a stratified sea with respect to the daily migration of zooplankton. Part 1. P-V-Z-D model, Oceanologia, 40 (4), 355-370.
  • [7] Dzierzbicka-Głowacka L., Zieliński A., 1998b, An algorithm for calculating the concentration of phytoplankton in a stratified sea with respect to the daily migration of zooplankton. Part 2. Numerical simulation, Oceanologia, 40 (4), 371-398.
  • [8] Mullin M. M., Brooks E. R., 1970, The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of the marine copepod Calanus helgolandicus, Limnol. Oceanogr., 15, 748-755.
  • [9] Paffenhöfer G. A., 1971, Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus, Mar. Biol., 11, 286-298.
  • [10] Parsons T. R., Tokahashi M., Hargrave B., 1984, Biological oceanographic processes, Pergamon Press, Oxford, 330 pp.
  • [11] Postma H., Rommets J. W., 1984, Variations of particulate organic carbon in the central North Sea, Neth. J. Sea Res., 18, 31-50.
  • [12] Radach G., 1983, Simulations of phytoplankton dynamics and their interaction with other system components during FLEX’76, [in:] North Sea dynamics, J. Sündermann, W. Lenz (eds.), Springer-Verlag, Berlin, Heidelberg, New York, 584-632.
  • [13] Radach G., Berg J., Heinemann B., Krause M., 1984, On the relation of primary production and herbivorous zooplankton grazing in the northern North Sea during FLEX’76, [in:] Flows of energy and materials in marine ecosystems, theory and practice, M. Fasham (ed.), NATO Conference Series 4, Plenum Press, New York, 597-625.
  • [14] Radach G., Moll A., 1993, Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea, Prog. Oceanogr., 31, 339-419.
  • [15] Raymont J. E., 1980, Plankton and productivity in the oceans, [in:] Phytoplankton, t. 1, Pergamon Press, Toronto, 489 pp.
  • [16] Renk H., 2000, Primary production in the southern Baltic, Sea Fish. Inst., A (35), 78 pp.
  • [17] Renk H., Ochocki S., 1998, Photosynthetic rate and light curves of phytoplankton in the southern Baltic, Oceanologia, 40 (4), 331-344.
  • [18] Renk H., Ochocki S., 1999, Primary production in the southern Baltic Sea determined from photosynthetic light curves, Bull. Sea Fish. Inst., 3 (148), 23-40.
  • [19] Ryther J. H., 1956, Photosynthesis in the ocean as a function of light intensity, Limnol. Oceanogr., 1, 61-70.
  • [20] Sjöberg S., 1980, A mathematical and conceptual framework for models of the pelagic ecosystem of the Baltic Sea, [in:] Formulations and exploratory simulations, Askö labor Stockholm University, Stockholm, 27 pp.
  • [21] Steele J. H., 1974, The structure of marine ecosystems, Harvard University Press, Cambridge, Mass., 128 pp.
  • [22] Steele J. H., Mullin M. M., 1977, Zooplankton dynamics, [in:] The sea. Ideas and observations on process in the study of the sea, E. D. Goldberg, I. N. McCave, J. J. O’Brien, J. H. Steele (eds.), Intersci. Publ., New York-London-Sydney-Toronto, 6, 857-887.
  • [23] Woźniak B., Pelevin V. N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25-55.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0014-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.