PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Is iron a limiting factor of Nodularia spumigena blooms?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is well known that a deficiency of iron, a trace element essential to every living organism, limits the growth of algae and cyanobacteria. Nodularia spumigena Mertens is a blue-green algae species inhabiting the Baltic region that often forms toxic blooms. The aim of the study was to assess the growth of the toxic cyanobacteria with respect to iron bioavailability. The measured growth parameters were the numbers of cells (optical density), chlorophyll a and pheopigment a concentrations. The iron concentrations used ranged from 10-7 to 10-4 mol dm-3. Under iron stress conditions (<5 × 10-7 mol dm-3), growth inhibition, gradual pigment decay and cell mortality were observed. However, enriching the medium with complexing factors like citric acid and EDTA significantly stimulated the growth rate and chlorophyll a production. The citric acid - EDTA - Fe (5 × 10-7 mol dm-3) complex was demonstrably effective in stimulating the rate of cell division. Starting with 10-6 mol dm-3, the higher the iron(III) concentration used in the media, the more intensive the growth of the cyanobacteria populations. This was most rapid in the presence of high iron concentrations (10-4 mol dm-3), regardless of the presence of complexing agents. It appears that the growth of toxic cyanobacteria N. spumigena, and thus also its ability to form blooms, may well depend on iron availability in the environment
Słowa kluczowe
Czasopismo
Rocznik
Strony
679--692
Opis fizyczny
Bibliogr. 55 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Bibliografia
  • [1] Armstrong J. E., Van Baalen C., 1979, Iron transport in microalgae: the isolation and biological activity of a hydroxamate siderophore from the blue-green algae Agmenellum quadruplicatum, J. Gen. Microbiol., 111, 253-262.
  • [2] Berg C. M. G. van den, 1995, Evidence for organic complexation of iron in seawater, Mar. Chem., 50, 139-157.
  • [3] Brand L. E., 1991, Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production, Limnol. Oceanogr., 36 (8), 1756-1771.
  • [4] Brand L. E., Sunda W. G., Guillard R. R. L., 1983, Limitation of marine phytoplankton reproductive rates by zinc, manganese and iron, Limnol. Oceanogr., 28, 1182-1198.
  • [5] Brown C. M., Trick C. G., 1992, Response of the cyanobacterium, Oscillatoria tenuis, to low iron environments: the effect on the growth rate and evidence for siderophore production, Arch. Microbiol., 157, 349-354.
  • [6] Coale K. H., Johnson K. S., Fitzwater S. E., Gordon R. M., Tanner S., Chavez F. P., Ferioli L., Sakamoto C., Rogers P., Millero F., Steinberg P., Nightingale P., Copper D., Cochlan W. P., Landry M. R., Constantinou J., Rollwagen G., Trasvina A., Kudela R., 1996, A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean, Nature, 383, 495-501.
  • [7] Codd G. A., Bell S. G., Kaya K., Ward C. J., Beattie K. A., Metcalf J. S., 1999, Cyanobacterial toxins, exposure routes and human health, Eur. J. Phycol., 34, 405-415.
  • [8] Fujiki H., Sueke E., Suganuma M., 1996, Carcinogenesis of microcystins, [in:] Toxic microcystis, M. F. Watanabe, K. I. Harada, W. W. Carmichael & H. Fujiki (eds.), CRC Press, Boca Raton, 252 pp.
  • [9] Gerringa L. J. A., de Baar H. J. W., Timmermans K. R., 2000, A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA, Mar. Chem., 68, 335-346.
  • [10] Gledhill M., Van den Berg C. M. G., 1994, The determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry, Mar. Chem., 47, 41-54.
  • [11] Horstmann U., 1975, Eutrophication and mass production of blue-green algae in the Baltic, Merentutkimuslait. Julk./Havsforskningsinst. Skr., 239, 83-90.
  • [12] Hutner S. H., Provasoli L., Schatz A., Haskins C. P., 1950, Some approaches to the study of the role of metals in the metabolism of microorganisms, Proc. Am. Philos. Soc., 94, 152-170.
  • [13] Johnson K. S., Coale H. K., Elrod V. A., Tindale N. W., 1994, Iron photochemistry in seawater from the equatorial Pacific, Mar. Chem., 46, 319-334.
  • [14] Kahru M., Horstmann U., Rud O., 1994, Satellite detection of increased cyanobacterial blooms in the Baltic Sea: natural fluctuation or ecosystem change?, Ambio, 23 (8) 469-472.
  • [15] Kononen K., Niemi Å., 1984, Long-term variation of the phytoplankton composition at the entrance to the Gulf of Finland, Ophelia, Suppl. 3, 101-110.
  • [16] Kosakowska A., 1999, The influence of iron and selected organic compounds on Baltic Sea phytoplankton, (Habilitation thesis in ecophysiology and biochemistry of marine algae), Rozpr. i monogr., Inst. Oceanol. PAN, Sopot, 11, 73-75, (in Polish with English summary).
  • [17] Kosakowska A., Kupryszewski G., Mucha P., Rekowski P., Lewandowska J., Pazdro K., 1999, Identification of selected siderophores in the Baltic Sea environment by the use of capillary electrophoresis, Oceanologia, 41 (4), 573-587.
  • [18] Kosakowska A., Lewandowska J., Stoń J., Burkiewicz K., 2004, Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron, BioMetals, 17, 45-52.
  • [19] Kuma K., Nakabayashi S., Suzuki Y., Kudo I., Matsunaga K., 1992, Photo-reduction of Fe (III) by dissolved organic substances and existence of Fe (II) in seawater during spring blooms, Mar. Chem., 37, 15-27.
  • [20] Larsson U., Elmgren R., Wulff F., 1985, Eutrophication and the Baltic Sea: causes and consequences, Ambio, 14 (1), 9-14.
  • [21] Lippard S. J., Berg J. M., 1998, Podstawy chemii bionieorganicznej, PWN, Warszawa, 36 pp.
  • [22] Lorenzen S. J., 1967, Determination of chlorophyll and pheopigments: spectrophotometric equations, Limnol. Oceanogr., 12, 343-346.
  • [23] Marsh H. V., Evans H. J., Matrone G., 1963, Plant Physiol., 38 (6), pp. 632-638; 638-642, [after citation in:] Udział mikroelementów w metabolizmie roślin, PWRiL, Warszawa, 1971, 160 pp., (the Polish translation by Z. Sójkowski).
  • [24] Martin J. H., Coale K. H., Johnson K. S., Fitzwater S. E., Gordon R. M., Tanner S. J., Hunter C. N., Elrod V. A., Nowicki J. L., Coley T. L., Barber R. T., Lindley S., Watson A. J., Van Scoy K., Law C. S., Liddicoat M. I., Ling R., Stanton T., Stockel J., Collins C., Anderson A., Bidigare R., Ondrusek M., Latasa M., Millero F. J., Lee K., Yao W., Zhang J. Z., Friederich G., Sakamoto C., Chavez F. P., Buck K., Kolber Z., Greene R., Falkowski P., Chisholm S. W., Hoge F., Swift R., Yungel J., Turner S., Nightingale P., Hatton A., Liss P., Tindale N. W., 1994, Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean, Nature, 37, 123-129.
  • [25] Mazur H., Pliński M., 2003, Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdańsk, Oceanologia, 45 (2), 305-316.
  • [26] Mucha P., Rekowski P., Kosakowska A., Kupryszewski G., 1999, Separation of siderophores by capillary electrophoresis, J. Chromatogr., 830 (A), 183-189.
  • [27] Murphy L. S., Guillard R. R. L., Brown J. F., 1984, The effects of iron and manganese on copper sensitivity in diatoms: differences in the responses of closely related neritic and oceanic species, Biol. Oceanogr., 3, 187-201.
  • [28] Murphy T. P., Lean D. R. S., Nalewajko C., 1976, Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae, Science, 192, 900-902.
  • [29] Myers J., Philips J. N., Jr., Graham J.-R., 1951, On the mass culture of algae, Plant Physiol., 26, 539-548.
  • [30] Niemi A., 1979, Blue-green algal blooms and N:P ratio in the Baltic Sea, Acta Bot. Fenn., 110, 57-61.
  • [31] Ohta T., Sueoka E., Iida N., Komori A., Suganuma M., Nishiwaki R., Tatematsu M., Kim S. J., Carmichael W. W., Fujiki H., 1994, Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver, Cancer Res., 54, 6402-6407.
  • [32] Öquist G., 1971, Changes in plant composition and photosynthesis induced by iron-deficiency in the blue-green alga Anacystis nidulans, Plant Physiol., 25, 188-191.
  • [33] Öquist G., 1974, Iron deficiency in the blue-green alga Anacystis nidulans: changes in pigmentation and photosynthesis, Plant Physiol., 30, 30-37.
  • [34] Öztürk M., Steinnes E., Sakshaug E., 2002, Iron speciation in the Trondheim Fjord from the perspective of iron limitation for phytoplankton, Estuar. Coast. Shelf Sci., 55, 197-212.
  • [35] Parsons T. R., 1966, The determination of photosynthetic pigments in sea-water. A survey of methods, [in:] Determination of photosynthetic pigments in seawater, SCOR-UNESCO, Paris.
  • [36] Pempkowiak J., Chiffoleau J.-P., Staniszewski A., 2000, Vertical and horizontal distribution of selected heavy metals in the Southern Baltic Sea off Poland, Estuar. Coast. Shelf Sci., 51 (1), 115-125.
  • [37] Raven J. A., 1988, The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources, New Phytol., 109, 279-287.
  • [38] Raven J. A., 1990, Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway, New Phytol., 116, 1-18.
  • [39] Rinehart K. L., Harada K. I., Namikoshi M., Chen C., Harvis C. A., Munro M. H., Blunt J. W., Muligan P. E., Beasley V. R., Dahlem A. M., Carmichael W. W., 1988, Nodularin, microcystin, and the configuration of ADDA, J. Am. Chem. Soc., 110 (25), 8557-8558.
  • [40] Rueter J. G., Ohki K., Fujita Y., 1990, The effect of iron nutrition on photosynthesis and nitrogen fixation in cultures of Trichodesmium (Cyanophyceae), J. Phycol., 26, 30-35.
  • [41] Rydin E., Hyenstrand P., Gunnerhed M., Blomqvist P., 2002, Nutrient limitation of cyanobacterial blooms: an enclosure experiment from the coastal zone of the northwest Baltic proper, Mar. Ecol. Prog. Ser., 239, 31-36.
  • [42] Ryther J. H., Kramer D. D., 1961, Relative iron requirement of some coastal and offshore plankton algae, Ecology, 42, 444-446.
  • [43] Simpson F. B., Neilands J. B., 1976, Siderochromes in cyanophyceae: isolation and characterization of schizokinen from Anabaena sp., J. Phycol., 12, 44-48.
  • [44] Sivonen K., Kononen K., Esala A. L., Niemelä S. I., 1989, Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986, Hydrobiologia, 185, 3-8.
  • [45] Soria-Dengg S., Horstmann U., 1995, Ferrioxamine B and E as iron source for the marine diatom Phaeodactylum tricornutum, Mar. Ecol. Prog. Ser., 127, 269-277.
  • [46] Soria-Dengg S., Reissbrodt R., Horstmann U., 2001, Siderophores in marine coastal waters and their relevance for iron uptake by phytoplankton: experiments with the diatom Phaeodactylum tricornutum, Mar. Ecol. Prog. Ser., 220, 73-82.
  • [47] Stal L. J., Staal M., Villbrandt M., 1999, Nutrient control of cyanobacterial blooms in the Baltic Sea, Aquat. Microbiol. Ecol., 18, 165-173.
  • [48] Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G., 1971, Purification and properties of unicellular blue-green algae (Order Chroococcales), Bact. Rev., 35, 171-205.
  • [49] Stryer L., 1997, Biochemia, PWN, Warszawa, 1132 pp.
  • [50] Sunda W. G., Swift D. G., Huntsman S. A., 1991, Low iron requirement for growth in oceanic phytoplankton, Nature, 351, 55-57.
  • [51] Surosz W., Kosakowska A., Falkowski L., 1994, Wpływ żelaza na zawartość chlorofilu a i inkoroprację węgla-14 w kulturach glonów Chlorella vulgaris Beijerinck i Anabaena variabilis Kützing, Zesz. Nauk. Uniw. Gdańsk., Oceanografia, 13, 71-87.
  • [52] Trick C. G., 1989, Hydroxamate-siderophore production and utilization by marine eubacteria, Curr. Microbiol., 18, 375-378.
  • [53] Trick C. G., Wilhelm S. W., Brown C. M., 1995, Alterations in cell pigmentation, protein expression and photosynthetic capacity of the cyanobacterium Oscillatoria tenuis, grown under low iron conditions, Can. J. Microbiol., 41, 117-123.
  • [54] Wilhelm S. W., Maxwell D. P., Trick C. G., 1996, Growth, iron requirements and sideophore production in iron-limited Synechococcus PCC 7002, Limnol. Oceanogr., 41 (1), 89-97.
  • [55] Zgirski A., Gondko R., 1981, Obliczenia biochemiczne, PWN, Warszawa, 4-45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.