PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The relationship between dissolved carbohydrates and carbohydrate-degrading enzymes in the salinity gradient of the Pomeranian Bight (southern Baltic)

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
From 1994 to 1996 changes in the concentrations of dissolved mono- (MCHO) and total dissolved polysaccharides (TCHO) as well as the activities of carbohydrate-degrading enzymes ?- and ?-glucosidase, glucosaminidase) were investigated during mixing of water from the River Odra and the open Pomeranian Bight. This study addresses the question of whether their distribution was a result of physical dilution alone or if biological interactions were detectable. Within the salinity gradient, ranging from 1.9 to 7.8 PSU, TCHO declined from 13.2 žmol l-1 near the Świna mouth to 2.8 žmol l-1 after mixing. Concentrations of MCHO decreased from 3.4 žmol l-1 to 1.1 žmol l-1 but its distribution pattern varied more between summer and autumn than that of TCHO. The hydrolysis rate (Hr) by glucosidase and glucosaminidase activities was reduced from 13.9% h-1 to 0.3% h-1 and 9.9% h-1 to 0.2% h-1, respectively, and correlated with the uptake rate of glucose (To) by bacteria. In summer, the To/Hr ratio increased from about 1.2 to 29.4, mainly because of stronger decreases in Hr than in To. It was shown that the relationship between enzymatic release and uptake of carbohydrates influences the concentration of dissolved carbohydrates within the salinity gradient. Most probably, the decrease in carbohydrate-degrading enzymes is the result of reduced substrate stimulation and the lower number of particle-associated bacteria.
Czasopismo
Rocznik
Strony
437--452
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • Baltic Sea Research Institute, Seestrasse 15, DE-18119 Rostock-Warnemünde, Germany
autor
  • Baltic Sea Research Institute, Seestrasse 15, DE-18119 Rostock-Warnemünde, Germany
Bibliografia
  • [1] Arrieta J. M., Herndl G. J., 2002, Changes in bacterial β-glucosidase diversity during a coastal phytoplankton bloom, Limnol. Oceanogr., 47, 594-599.
  • [2] Benner R., Pakulski J. D., McCarthy M., Hedges J. I., Hatcher P. G., 1992, Bulk chemical characterization of dissolved organic matter in the ocean, Science, 255, 1561-1564.
  • [3] Biersmith A., Benner R., 1998, Carbohydrates in phytoplankton and freshly produced dissolved organic matter, Mar. Chem., 63, 131-144.
  • [4] Borch N. H., Kirchman D. L., 1997, Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD, Mar. Chem., 57, 85-95.
  • [5] Børsheim K. Y., Myklestad S. M., Sneli J.-A., 1999, Monthly profiles of DOC, mono- and polysaccharides at two locations in the Trondheimfjord (Norway) during two years, Mar. Chem., 63, 255-272.
  • [6] Chrost R. J., 1991, Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, [in:] Microbial enzymes in aquatic environments, R. J. Chrost (ed.), Springer-Verl., New York, 29-59.
  • [7] Cunha M. A., Almeida M. A., Alcântara F., 2000, Patterns of ectoenzymatic and heterotrophic bacterial activities along a salinity gradient in a shallow tidal estuary, Mar. Ecol. Prog. Ser., 204, 1-12.
  • [8] Handa N., Tominaga H., 1969, A detailed analysis of carbohydrates in marine particulate matter, Mar. Biol., 2, 228-235.
  • [9] Hellebust J. A., 1965, Excretion of some organic compounds by marine phytoplankton, Limnol. Oceanogr., 10 (2), 192-206.
  • [10] Hellebust J. A., 1974, Extracellular products, [in:] Algal physiology and biochemistry, W. D. P. Stewart (ed.), Blackwell, Oxford, 838-863.
  • [11] Hoppe H. G., 1993, Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria, [in:] Handbook of methods in aquatic microbial ecology, P. K. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds.), Lewis Publ., Boca Raton, 423-431.
  • [12] Hoppe H. G., Giesenhagen H. C., Gocke K., 1998, Changing patterns of bacterial substrate decomposition in a eutrophication gradient, Aquat. Microbiol. Ecol., 15, 1-13.
  • [13] Hoppe H. G., Gocke K., Alcântara F., 1996, Shifts between autotrophic and heterotrophic processes in a tidal lagoon (Ria de Aveiro, Portugal), Arch. Hydrobiol., Spec. Iss. Adv. Limnol., 48, 39-52.
  • [14] Hoppe H. G., Kim S. J., Gocke K., 1988, Microbial decomposition in aquatic ecosystems: combined processes of extracellular enzyme activities and substrate uptake, Appl. Environ. Microbiol., 54, 784-790.
  • [15] Irmisch A., 1987, Untersuchungen über gelöste Kohlenhydrate in der Ostsee, Beitr. Meeresk., 56, 19-26.
  • [16] Johnson K. M., Sieburth J. McN., 1977, Dissolved carbohydrates in seawater I. A precise spectrophotometric analysis for monosaccharides, Mar. Chem., 5, 1-13.
  • [17] Jost G., Pollehne F., 1998, Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight), Hydrobiologia, 363, 107-115.
  • [18] Karner M., Rassoulzadegan C., Rassoulzadegan F., 1995, Extracellular enzyme activity: indications for hight short-term variability in a coastal marine ecosystem, Microbiol. Ecol., 30, 143-156.
  • [19] Kirchman D. L., Meon B., Ducklow H. W., Carlson C. A., Hansell D. A., Steward G. F., 2001, Glucose fluxes and concentrations of dissolved combined neutral sugars (polysaccharides) in the Ross Sea and Polar Front Zone, Antarctica, Deep-Sea Res.-Part II, 48, 4179-4197.
  • [20] Klok J., Cox H. C., Baas M., Schuyl P. J. W., de Leeuw J. W., Schenck P. A., 1984, Carbohydrates in recent marine sediments – I. Origin and significance of deoxy- and O-methyl-monosaccharides, Org. Geochem., 7, 73-84.
  • [21] Lee C., Henrichs S. M., 1993, How the nature of dissolved organic matter might affect the analysis of dissolved organic carbon, Mar. Chem., 41, 105-120.
  • [22] Libes S. M., 1992, An introduction to marine biogeochemistry, John Wiley & Sons, New York, 394-422.
  • [23] Liebezeit G., Bölter M., 1991, Water-extractable carbohydrates in particulate matter of the Bransfield Strait, Mar. Chem., 35, 389-398.
  • [24] Martinez J., Smith D. C., Steward G. F., Azam F., 1996, Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea, Aquat. Microbiol. Ecol., 10, 223-230.
  • [25] Mopper K., Zhou X., Kieber R. J., Kieber D. J., Sirorski R. J., Jones R. D., 1991, Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle, Nature, 353, 60-62.
  • [26] Münster U., 1991, Extracellular enzyme activity in eutrophic and polyhumic lakes, [in:] Microbial enzymes in aquatic environments, R. J. Chrost (ed.), Springer-Verl., New York, 96-122.
  • [27] Münster U., Chrost R. J., 1990, Origin, composition and microbial utilization of dissolved organic matter, [in:] Aquatic microbial ecology. Biochemical and molecular approaches, J. Overbeck & R. J. Chrost (eds.), Springer-Verl., New York, 8-46.
  • [28] Nausch M., 1996, Microbial activities on Trichodesmium colonies, Mar. Ecol. Prog. Ser., 141, 173-181.
  • [29] Pastuszak M., Nagel K., Nausch G., 1996, Variability in nutrient distribution in the Pomeranian Bay in September 1993, Oceanologia, 38 (2), 195-225.
  • [30] Pomeroy L. R., Wiebe E. W. J., 1993, Energy sources for microbial food webs, Mar. Microbiol. Food Webs, 7, 101-118.
  • [31] Rath J., Schiller C., Herndl G. J., 1993, Ectoenzymatic activity and bacterial dynamics along a trophic gradient in the Caribbean Sea, Mar. Ecol. Prog. Ser., 102, 89-96.
  • [32] Rosemarin A., Notini M., Soederstroem M., Jensen S., Landener L., 1990, Fate and effects of pulp mill chlorophenolic 4,5,6-trichloroguaiacol in a model brackish water ecosystem, Sci. Total Environ., 92, 69-89.
  • [33] Sherr E. B., Sherr B. F., 1999, β-Glucosaminidase activity in marine microbes, FEMS Microbiol. Ecol., 28, 111-119.
  • [34] UNESCO, 1994, Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements, IOC/SCOR Manual and Guides, 29, 128-134.
  • [35] Von Bodungen B., Graeve M., Kube J., Lass U., Meyer-Harms B., Mumm N., Nagel K., Pollehne F., Powilleit M., Reckermann M., Sattler C., Siegel H., Wodarg D., 1995, Stoff-flüsse am Grenzfluß– Transport- und Umsatzprozesse im Übergangsbereich zwischen Oderästuar und Pommerscher Bucht (TRUMP), Geowissenschaften, 12/13, 479-485.
  • [36] Vrba J., 1992, Seasonal extracellular enzyme activities in decomposition of polymeric organic matter in a reservoir, Arch. Hydrobiol. Beih. Ergebn. Limnol., 37, 33-42.
  • [37] Wedborg M., Skoog A., Fogelqvist E., 1994, Organic carbon and humic substances in the Baltic Sea, the Kattegat, and the Skagerrak, [in:] Humic substances in the global environment and implications in human health, N. Senesi & T. M. Miano (eds.), Elsevier, Amsterdam, 914-924.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0075
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.