PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content and pattern of organic pollutants (PAHs, PCBs and DDT) in blue mussels Mytilus trossulus from the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work was to assess the contents and patterns of selected organic pollutants (polycyclic aromatic hydrocarbons - PAHs, polychlorinated biphenyls - PCBs, and chlorinated pesticides - DDT) in the southern part of the Baltic Sea proper, using blue mussels, Mytilus trossulus, as sentinel organisms. The mussels were collected from the Baltic Sea off Poland. The sampling programme focused on the mouths of the rivers Odra and Vistula, located respectively in the Pomeranian Bay and the Gulf of Gdansk, both known to be under anthropogenic pressure. The analyses of PCBs and DDT were performed by GC-ECD, that of PAHs by GC-MS. Mussels from both the Vistula and Odra estuaries were found to contain higher levels of organic contaminants (PAHs, PCBs, DDT; 29.7 ng g-1 w.w. (wet weight), 22.3 ng g-1 w.w., 11.2 ng g-1 w.w. respectively) as compared to the reference point (PAHs - 8.6 ng g-1 w.w., PCBs - 1.9 ng g-1 w.w., DDT - 1.3 ng g-1 w.w.). These results confirm the direct influence of land-based pollution sources on the content of organic pollutants (PAHs, PCBs, and DDT) in the southern Baltic Sea, and point to the Gulf of Gdansk as the area most under threat. P/A and Fluo/Py ratios indicate that in all the mussels analysed, the contaminants were derived mainly from pyrolitic combustion. The mussels collected along the Polish coast of the Baltic contain mostly tetra-aromatic isomers (fluoranthene, pyrene, benzo(a)anthracene and chrysene), penta-aromatic isomers (benzo(b)fluoranthene, benzo(e)fluorene, benzo(a)pyrene and dibenzo(a,h)-anthracene) and hexa-aromatics (indeno(1,2,3-cd)pyrene and benzo(ghi)perylene) rather than di- and tri-aromatics (naphthalene, fluorene, phenanthrene and anthracene). As regards PCBs, the Baltic mussels contain mostly the more highly chlorinated congeners (penta- and hexachlorobiphenyls). The PCB / pp' DDE and PAH / pp' DDE ratios indicate the predominance of PCBs and PAHs over agriculturally derived DDE in both the Pomeranian Bay and the Gulf of Gdansk.
Słowa kluczowe
Czasopismo
Rocznik
Strony
337--355
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
autor
  • Environmental Chemistry Department, CID/CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
autor
  • Environmental Chemistry Department, CID/CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
Bibliografia
  • [1] Albaigĕs J., Farran A., Sole M., Gallifa A., Martin P., 1987, Accumulation and distribution of biogenic and pollutant hydrocarbons. PCBs and DDT in tissues of Western Mediterranean fishes, Mar. Environ. Res., 22, 1-18.
  • [2] Barrie L. A., Gregor D., Hargrave R., Lake R., Muir D., Shearer R., Tracey B., Bidleman T., 1992, Arctic contaminants: sources, occurrence and pathways, Sci. Tot. Environ., 122, 1-74.
  • [3] Baumard P., Budzinski H., Garrigues P., Dizer H., Hansen P. D., 1999, Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from Western Baltic Sea: occurrence, bioavailability and seasonal variations, Mar. Environ. Res., 47, 17-47.
  • [4] Baumard P., Budzinski H., Garrigues P., Sorbe J. C., Burgeot T., Belloco J., 1998, Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level, Mar. Pollut. Bull., 36, 951-960.
  • [5] Boon J. P., Eijgenraam F., Everaats J. M., Duinker J. C., 1989, A structure-activity relationship (SAR) approach towards metabolism of PCBs in marine animals from different trophic levels, Mar. Environ. Res., 27, 159-176.
  • [6] Borislawskyj M., Garrood A. C., Pearson J. T., 1987, Rates of accumulation of dieldrin by a freshwater filter feeder: Sphaerium corneum, Environ. Pollut., 43, 3-13.
  • [7] Broman D., Näf C., Lundbergh I., Zebühr Y., 1990, An ‘in situ’ study on the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (Seston – Mytilus edulis L. – Somateria mollissima L.) from the Baltic:a n ecotoxicological perspective, Environ. Toxicol. Chem., 9, 429-442.
  • [8] Broman D., Näf C., Rolff C., Zebühr Y., 1991, Occurrence and dynamics of polychlorinated dibenzo- para-dioxins and dibenzofurans and polycyclic aromatic hydrocarbons in the mixed surface layer of remote coastal and offshore waters of the Baltic, Environ. Sci. Technol., 25, 1850-1864.
  • [9] Brown D., Gossett R. W., Mchugh S. R., 1986, Oxygenated metabolites of DDT and PCBs in marine sediments and organisms, [in:] Biological processes and waters in the oceans: oceanic processes in marine pollution, J. M. Capuzzo & D. R. Kester (eds.), Krieger, Malabar, FL, 1, 61-69.
  • [10] Budzinski H., Jones I., Bellocq J., Piérard C., Garrigues P., 1997, Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary, Mar. Chem., 58, 85-97.
  • [11] Cripps G. C., 1992, Natural and anthropogenic hydrocarbons in the Antarctic marine environment, Antarct. Sci., 3, 233-250.
  • [12] Dembowska A., 2000, Polychlorinated biphenyls (PCBs) in the southern part of the Baltic Sea, Ph. D. thesis, Uniw. Gd., Gdańsk, (in Polish).
  • [13] Escartin E., Porte C., 1999a, Biomonitoring of PAH pollution in high-altitude mountain lakes through the analysis of fish bile, Environ. Sci. Technol., 33, 406-409.
  • [14] Escartin E., Porte C., 1999b, Hydroxylated PAHs in bile of deep-sea fish. Relationship with xenobiotic metabolizing enzymes, Environ. Sci. Technol., 33, 2710-2714.
  • [15] Evans M. S., Noguchi G. E., Rice C. R., 1991, The biomagnification of polychlorinated biphenyls toxaphene and DDT compounds in a Lake Michigan offshore food web, Arch. Environ. Contam. Toxicol., 20, 87-93.
  • [16] Falandysz J., 1999, Polychlorinated biphenyls (PCBs) in the environment: chemistry, analysis, toxicity, concentration and risk assessment, Fund. Rozw. Uniw. Gd., Gdańsk, 265 pp., (in Polish).
  • [17] Falandysz J., Kannan K., Tanabe S., Tatsukawa R., 1994, Organochlorine pesticides and polychlorinated biphenyls in cod liver oils: North Atlantic, Norwegian Sea, North Sea and Baltic Sea, Ambio, 23, 288-293.
  • [18] Falandysz J., Strandberg L., Puzyn T., Gucia M., Rappe C., 2001, Chlorinated cyclodiene pesticide residues in blue mussel, crab, and fish in the Gulf of Gdańsk, Baltic Sea, Environ. Sci. Technol., 35, 4163-4169.
  • [19] Falandysz J., Strandberg B., Strandberg L., Bergqvist P. A., Rappe C., 1998, Concentration and spatial distribution of chlordanes and some other cyclodiene pesticides in Baltic plankton, Sci. Tot. Environ., 215, 253-258.
  • [20] Falandysz J., Strandberg B., Strandberg L., Rappe C., 1999, Tris(4-chlorophenyl) methane and tris(4-chlorophenyl)methanol in sediment and food webs from the Baltic south coast, Environ. Sci. Technol., 33, 517-521.
  • [21] Garrigues P., Budzinski H., Manitz M. P.,Wise S. A., 1995, Pyrolytic and petrogenic inputs in recent sediments: a definitive signature through phenanthrene and chrysene compound distribution, Polyc. Arom. Comp., 7, 275-284.
  • [22] HELCOM, 1997, Airborne pollution load to the Baltic Sea 1991-1995, Baltic Sea Environ. Proc., Helsinki Commiss., Helsinki, 69, 57 pp.
  • [23] Hickey C. W., Roper D. S., Holland P. T., Trower T. M., 1995, Accumulation of organic contaminants in two sediment-dwelling shellfish with contrasting feeding modes: deposit- (Macomona liliana) and filter-feeding (Austrovenus strutchburyi), Arch. Environ. Contam. Toxicol., 29, 221-231.
  • [24] Kowalewska G., Konat J., 1997, Distribution of polynuclear aromatic hydrocarbons PAHs in sediments of the southern Baltic Sea, Oceanologia, 39 (1), 83-104.
  • [25] Lee M. K., Kruse H., Wassermann O., 1996, The pattern of organochlorines in mussels Mytilus edulis L. from the South West Baltic Sea, Arch. Environ. Contam. Toxicol., 31, 68-76.
  • [26] Lipiatou E., Saliot A., 1991, Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the western Mediterranean Sea, Mar. Chem., 32, 51-71.
  • [27] Means J. C., 1998, Compound-specific gas chromatographic/mass spectrometric analysis of alkylated and parent polycyclic aromatic hydrocarbons in waters, sediments, and aquatic organisms, J. AOAC Int., 81, 657-672.
  • [28] Metcalfe J. L., Charlton M. N., 1990, Freshwater mussels as bioindicators for organic industrial contaminants and pesticides in the St. Lawrence river, Sci. Tot. Environ., 97/98, 595-615.
  • [29] Neff J. M., 1979, Polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects, Appl. Sci. Publ., London, 1-262.
  • [30] Porte C., Albaigĕs J., 1993, Bioaccumulation patterns of hydrocarbons and polychlorinated biphenyls in bivalves, crustaceans, and fishes, Arch. Environ. Contam. Toxicol., 26, 273-281.
  • [31] Raoux C., Garrigues P., 1993, Mechanism model of polycyclic aromatic hydrocarbons contamination of marine coastal sediments from the Mediterranean Sea, Proc. 13th Int. Symp. on Polynuclear Aromatic Hydrocarbons, Bordeaux (France), 1991, P. Garrigues & M. Lamotte (eds.), Gordon and Breach Sci. Publ., Langhome, Pensylvania, USA, 443-450.
  • [32] Sánchez J., Solé M., Albaigĕs J., 1993, A comparison of distribution of PCB congeners and other chlorinated compounds in fishes from coastal areas and remote lakes, Int. J. Environ. Anal. Chem., 50, 269-284.
  • [33] Schmitt C. J., Zajicek J. L., Peterman P. H., 1990, National contaminant biomonitoring program: residues of organochlorine chemicals in U. S. Freshwater fish, 1974-1984, Arch. Environ. Contam. Toxicol., 19, 748-781.
  • [34] Solé M., Porte C., Barcelo D., Albaigĕs J., 2000, Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean), Mar. Pollut. Bull., 40, 746-753.
  • [35] Stegeman J. J., Lech J. J., 1991, Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure, Environ. Health Persp., 90, 101-109.
  • [36] Strandberg B., Bandh C., Van Bavel B., Bergqvist P. A., Broman D., Näf C., Pettersen H., Rappe C., 1998, Concentrations, biomagnification and spatial variation of organochlorine compounds in a pelagic food web in the northern part of the Baltic Sea, Sci. Tot. Environ., 217, 143-154.
  • [37] Tanabe S., Tatsukawa R., Phillips D. J. H., 1987, Mussels as bioindicators of PCB pollution: A case study on uptake and release of PCB isomers and congeners in green-lipped mussels (Perna viridis) in Hong Kong waters, Environ. Pollut., 47, 412-462.
  • [38] Wakeham S. G., Schaffner C., Giger W., 1980, Polycyclic aromatic hydrocarbons in recent lake sediments – I. Compounds having anthropogenic origins, Geochim. Cosmochim. Acta, 44, 403-413.
  • [39] Witt G., 1995, Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea, Mar. Pollut. Bull., 31, 237-248.
  • [40] Zakrzewski S. F., 1995, The elements of environmental toxicology, PWN, Warszawa, 262 pp., (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0070
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.