PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deposition of organic matter and particulate nitrogen and phosphorus at the North Sea-Baltic Sea transition - a GIS study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A GIS (Geographical Information System) based study on deposition in the North Sea-Baltic Sea transition area has been carried out. The study is based on (i) a digital bathymetry model, (ii) 93 available 210Pb / 137Cs sedimentation rate estimations, (iii) grain-size distributions, organic matter, C, N and P content of 64 top 1 cm sediment samples from the study area, and (iv) GIS-based modelling of resuspension potentials based on wind statistics. With the use of regression statistics on depth, resuspension potential and sediment characteristics, results are extrapolated area-wide from the 64 sampling positions. The area is divided into sediment types and classified as accumulation or erosion/transport bottoms. Model results show good agreement with existing maps of sediment distributions, indicating that the sediment distribution is governed to a large extent by wind-induced waves. Correlations of sediment types, their deposition rates and their N and P contents were used to estimate spatial deposition rates. In all, the yearly deposition in the study area amounts to 2.8 million tons of organic matter, 0.14 million tons of total nitrogen, and 0.035 million tons of total phosphorus. Correlations of sediment types and dry bulk densities were used to infer spatial inventories of organic matter and total nitrogen and phosphorus in the top 1 cm of the sediments. A total of 100 million tons of organic matter, 4 million tons of total nitrogen, and 0.019 million tons of total phosphorus are contained in the top 1 cm of the sediments in the study area. In general, the deep parts of the study area with low resuspension potentials act as sinks for the fine-grained sediments and their associated particulate nutrients.
Czasopismo
Rocznik
Strony
283--303
Opis fizyczny
Bibliogr. 58 poz., fot., mapa, rys., tab.
Twórcy
autor
  • Institute of Geography, University of Copenhagen, Oester Voldgade 10, 1350 Copenhagen K, Denmark
  • Institute of Geography, University of Copenhagen, Oester Voldgade 10, 1350 Copenhagen K, Denmark
  • Institute of Geography, University of Copenhagen, Oester Voldgade 10, 1350 Copenhagen K, Denmark
  • Department of Marine Ecology, Aarhus University, Finlandsgade 14, 8200 Aarhus N, Denmark
autor
  • Institute of Geography, University of Copenhagen, Oester Voldgade 10, 1350 Copenhagen K, Denmark
autor
  • Baltic Sea Research Institute, Warnemünde, Seestrasse 15, 18119 Rostock, Germany
Bibliografia
  • [1] Agrawal Y. C., McCave I. N., Riley J. B., 1991, Laser diffraction analysis, [in:] Principles, methods and application of particle size analysis, J. P. M. Syvitski (ed.), Cambridge Univ. Press, New York, 119-128.
  • [2] Andersen J. M., 1976, An ignition method for the determination of total phosphorus in lake sediments, Water Resour. Res., 10, 329-331.
  • [3] Anderson L., Rydberg L., 1993, Exchange of water and nutrients between the Skagerrak and the Kattegat, Estuar. Coast. Shelf Sci., 36, 159-181.
  • [4] Beach Erosion Board, 1975, Shore Protection Manual, Vol. 1, U.S. Gov. Print Office, Washington D.C., 401 pp.
  • [5] Ball D. F., 1964, Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils, J. Soil Sci., 15, 84-89.
  • [6] Bernard P. C., Van Grieken R. E., 1989, Geochemistry of suspended matter from the Baltic Sea. 1. Results of individual particle characterization by automated electron microprobe, Mar. Chem., 26, 155-177.
  • [7] Cato I., 1997, Contaminants in the Skagerrak and Kattegat sediments, Sve. Geol. Unders. Ser. Ca, 86, 21-35.
  • [8] Christiansen C., Edelvang K., Emeis K.-C., Graf G., Jähmlich S., Kozuch J., Laima M., Leipe T., Loeffler A., Lund-Hansen L. C., Miltner A., Pazdro K., Pempkowiak J., Shimmield G., Shimmield T., Smith J., Witt G., 2002, Material transport from the nearshore to the basinal environment in the southern Baltic Sea; I: Processes and mass estimates, J. Mar. Sys., 35, 133-150.
  • [9] Christiansen C., Emelyanov E., 1995, Nutrients and organic matter in southern Kattegat-western Baltic Sea sediments: effects of resuspension, Danish J. Geogr., 95, 19-27.
  • [10] Christiansen C., Gertz F., Laima M., Lund-Hansen L. C., Vang T., Jürgensen C., 1997, Nutrient (P, N) dynamics in the southwestern Kattegat, Scandinavia: sedimentation and resuspension effects, Environ. Geol., 29, 66-77.
  • [11] Christiansen C., Kunzendorf H., Laima M., Lund-Hansen L. C., Pedersen A. M., 1996, Recent changes in environmental conditions in the southwestern Kattegat, Scandinavia, Bull. Nor. Geol. Unders., 430, 137-144.
  • [12] Christiansen C., Kunzendorf H., Otto C., Senstius J., 1993, Recent and subrecent sedimentary conditions in the southern part of the North Sea – Baltic Sea transition, Boreas, 22, 357-366.
  • [13] Christiansen C., Kunzendorf H., Tychsen H. R., 1995, CaCO3 in sediments of the North Sea – Baltic Sea transition: signals of high salinity?, Pr. Państ. Inst. Geol., 149, 151-154.
  • [14] Christensen P. B., Møhlenberg F., Lund-Hansen L. C., Borum J., Christiansen C., Larsen S. E., Hansen S. E., Andersen J., Kirkegaard J., 1998, The Danish marine environment: Has action improved its state?, Havforskning fra Miljøstyrelsen, 62, 120 pp.
  • [15] Eckhell J., Jonsson P., Meili M., Carman R., 2000, Storm influence on the accumulation and lamination of sediments in deep areas of the northwestern Baltic proper, Ambio, 29, 238-245.
  • [16] Emeis K.-C., Christiansen C., Edelvang K., Graf G., Jähmlich S., Kozuch J., Laima M., Leipe T., Loeffler A., Lund-Hansen L. C., Miltner A., Pazdro K., Pempkowiak J., Shimmield G., Shimmield T., Smith J., Witt G., 2002, Material transport from the nearshore to the basinal environment in the southern Baltic Sea; II: Origin and properties of material, J. Mar. Sys. 35, 151-168.
  • [17] Emeis K.-C., Struck U., Leipe T., Pollehne F., Kunzendorf H., Christiansen C., 2000, Changes in C, N, P burial rates in some Baltic Sea sediments over the last 150 years – relevance to P regeneration rates and the phosphorus cycle, Mar. Geol., 167, 43-59.
  • [18] Emelyanov E. M., Neumann G., Lemke W., Kramarska R., Uscinowich S., 1994, Bottom sediments of the Western Baltic (0-5 cm), 1:500:000, Dept. Navigat. and Oceanogr., Russian Federat. Min. Defence, St. Petersburg.
  • [19] Flemming B. W., 1999, On the concept of ‘wave base’ in sedimentary facies analysis and paleo-environmental reconstruction: a critical comment, Abstract IAS 19th Regional European Meeting of Sedimentology, 24-26 August, Copenhagen.
  • [20] Flemming B. W., 2000, A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams, Cont. Shelf Res. 20, 1125-137.
  • [21] Floderus S., 1989, The effect of sediment resuspension on nitrogen recycling in the Kattegat – variability in organic matter transport, UNGI Rapp. Nr. 71, Uppsala Univ.
  • [22] Floderus S., Håkanson L., 1989, Resuspension, ephemeral mud blankets and nitrogen cycling in Laholmsbukten, southeast Kattegat, Hydrobiol. J., 176/177, 61-75.
  • [23] Floderus S., Pihl L., 1989, Resuspension in the Kattegat: impact of variation in wind climate and fishery, UNGI Rapp. Nr. 71, paper III, Uppsala Univ.
  • [24] Garcia-Soto, C., de Madariaga I., Villate F., Orive E., 1990, Day-to-day variability in the plankton community of a coastal shallow embayment in response to changes in river runoff and water turbulence, Estuar. Coast. Shelf Sci., 31, 217-229.
  • [25] Gingele F., Leipe T., 2001, The southwestern Baltic Sea – a sink for suspended matter from the North Sea?, Geology, 29, 215-218.
  • [26] Hermansen B., Jensen J. B., 2000, Digitalt kort over havbundssedimenter omkring Danmark 1:500 000, Version 1.0.0, GEUS Rapp. Nr. 2000/68, CD-ROM.
  • [27] Ingri J., Löfvendahl R., Boström K., 1990, Chemistry of suspended particles in the southern Baltic Sea, Mar. Chem., 32, 73-87.
  • [28] Jonsson P., Carman R., Wulff F., 1990, Laminated sediments in the Baltic – A tool for evaluating nutrient mass balances, Ambio, 19, 152-158.
  • [29] Kanneworff E., Nicolaissen W., 1973, The ‘Haps’, a frame supported bottom corer, Ophelia, 10, 119-128.
  • [30] Komar P. D., Miller M. C., 1973, The threshold of sediment movement under oscillatory water waves, J. Sed. Petrol., 43, 1101-1110.
  • [31] Kristensen L., Frydendahl K., 1991, Danmarks vindklima fra 1870 til nutiden, Havforskning fra Miljøstyrelsen, 2, 57 pp.
  • [32] Kuijpers A., Dennegård B., Albinsson Y., Jensen A., 1993, Sediment transport pathways in the Skagerrak and Kattegat as indicated by Chernobyl radioactivity and heavy metal concentrations, Mar. Geol., 111, 231-244.
  • [33] Kuijpers A., Nielsen P. E., Larsen B., Cato I., Kjellin B., Jensen J. B., Leth J. O., Novak B., Nielsen T., 1992, Bottom sediments around Denmark and Western Sweden, Sve. Geol. Unders., 48 (Ba), Map 1:500 000.
  • [34] Laima M. J. C., Matthiesen H., Christiansen C., Lund-Hansen L. C., Emeis K.-C., 2001, Dynamics of P, Fe and Mn along a depth gradient in the SW Baltic Sea, Bor. Environ. Res., 6, 317-333.
  • [35] Laima, M. J. C., Matthiesen, H., Lund-Hansen, L. C., Christiansen, C., 1998, Resuspension studies in cylindrical microcosms: effects of flow velocity on the dynamics of redox sensitive species in a coastal sediment, Biogeochem., 43, 293-309.
  • [36] Larsen B., Brügmann L., 1992, Phosphorus accumulation in the sediments of the Baltic Sea, ICES Rep. No. 180, 109-121.
  • [37] Laursen J. S., Christiansen C., Andersen P., Schwærter S., 1992, Flux of sediments and nutrients from shallow to deep water in a Danish fjord, [in:] R. A. Vollenweider, R. Marchetti & R. Viviani (eds.), Marine coastal eutrophication, Elsevier, Amsterdam, 1069-1078.
  • [38] Lund-Hansen L. C., Christiansen C., Laima M., 2002, A new video controlled, hydraulically damped box-corer for sediment/water interaction studies, Mar. Georesour. Geotechnol., 19, 147-154.
  • [39] Lund-Hansen L. C., Floderus S., Pejrup M., Valeur J., Jensen A., 1993, Short and long term variations in vertical flux and sediment accumulation rates in a semi-enclosed bay at the frontal zone between the North Sea and the Baltic Sea, Proc. Int. Coast. Congr., ICC-Kiel’92, Peter Langs Verl., 576-585.
  • [40] Lund-Hansen L. C., Petersson M., Nurjaya W., 1999, Vertical sediment fluxes and wave induced sediment resuspension in a shallow water coastal lagoon, Estuaries, 22, 39-46.
  • [41] Lundqvist D., Jansen D., Balstroem T., Christiansen C., 2003b, A GIS based method for determination of the maximum fetch for the North Sea – Baltic Sea transition: a necessary input in modellings of hydrodynamic and sedimentological parameters, J. Coast. Res., (submitted).
  • [42] Lundqvist D., Jansen D., Christiansen C., Jensen A., Kunzendorf H., 2003a, Recent marine sedimentation rates in the North Sea – Baltic Sea transition. A summary, Danish J. Geogr., 103, (in press).
  • [43] Madsen P. F., Larsen B., 1986, Accumulation of mud sediments and trace metals in the Kattegat and the Belt Sea, Mar. Pollut. Lab., Rep. No. 10, Copenhagen, 54 pp.
  • [44] Møller J. S., 1996, Water masses, stratification and circulation. [in:] Coastal and estuarine studies: eutrophication in coastal marine ecosystems, B. B. Jørgensen & K. Richardson (eds.), Am. Geophys. Un., Washington D.C., 51-66.
  • [45] Nordberg K., Bergsten H., 1988, Biostratigraphic and sedimentological evidence of hydrographic changes in the Kattegat during the later part of the Holocene, Mar. Geol., 83, 135-158.
  • [46] Richardson K., 1996, Carbon flow in the water column – case study: the southern Kattegat, [in:] Coastal and estuarine studies: eutrophication in coastal marine ecosystems, B. B. Jørgensen & K. Richardson (eds.), Am. Geophys. Un., Washington D.C., 95-114.
  • [47] Rysgaard S., Fossing H., Jensen M. M., 2001, Organic matter degradation through oxygen respiration, denitrification, and manganese, iron and sulfate reduction in marine sediments (the Kattegat and the Skagerrak), Ophelia, 55, 77-91.
  • [48] Sandford L. P., 1994, Wave-forced resuspension of upper Chesapeake Bay muds, Estuaries, 18, 148-165.
  • [49] Sandford L. P., Panageotou W., Wong, 1991, Tidal resuspension of the sediments in northern Chesapeake Bay, Mar. Geol., 97, 78-103.
  • [50] Seidenkrantz M.-S., 1993, Subrecent changes in the foraminiferal distribution in the Kattegat and the Skagerrak, Scandinavia: anthropogenic influence and natural causes, Boreas, 22, 383-395.
  • [51] Simon N. S., 1989, Nitrogen cycling between sediment and the shallow-water column in the transition zone of the Potomac river and estuary. II. The role of wind-driven resuspension and adsorbed ammonium, Estuar. Coast. Shelf Sci., 28, 531-547.
  • [52] Sly P. G., 1978, Sedimentary processes in lakes, [in:] A. Lehrman (ed.), Lakes: chemistry, geology, physics, Springer Verl., Heidelberg, 65-89.
  • [53] Stigebrandt A., 1983, A model for the exchange of water and salt between the Baltic and the Skagerrak, J. Phys. Oceanogr., 13, 411-427.
  • [54] Syvitski J. P. M., Asprey K. W., LeBlanc K. W. G., 1991, Principles, design, and calibration of settling tubes, [in:] Principles, methods and application of particle size analysis, J. P. M. Syvitski (ed.), Cambridge Univ. Press, New York, 45-63.
  • [55] Valeur J., Jensen A., Pejrup M., 1995, Turbidity, particle fluxes and mineralization of carbon and nitrogen in a shallow coastal area, Mar. Freshwat. Res., 46, 409-418.
  • [56] Van Weering T. C. E., Berger G. W., Kalf J., 1987, Recent sediment accumulation in the Skagerrak, Northeastern North Sea, Neth. J. Sea Res., 21, 177-189.
  • [57] Weir D. J., McManus J., 1987, The role of wind in generating turbidity maxima in the Tay estuary, Cont. Shelf Res., 7, 1315-1318.
  • [58] Wiltshire K. H., Geisler C. D., Schroeder F., Knauth H. D., 1994, Pigments in suspended matter from the Elbe estuary and the German Bight. Their use as marker compounds for the characterisation of suspended matter and in interpretation of heavy metal loadings, Arch. Hydrobiol., Spec. Iss. Advanc. Limnol., 47, 53-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.