PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling light and photosynthesis in the marine environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The overriding and far-reaching aim of our work has been to achieve a good understanding of the processes of light interaction with phytoplankton in the sea and to develop an innovative physical model of photosynthesis in the marine environment, suitable for the remote sensing of marine primary production. Unlike previous models, the present one takes greater account of the complexity of the physiological processes in phytoplankton. We have focused in particular on photophysiological processes, which are governed directly or indirectly by light energy, or in which light, besides the nutrient content in and the temperature of seawater, is one of the principal limiting factors. To achieve this aim we have carried out comprehensive statistical analyses of the natural variability of the main photophysiological properties of phytoplankton and their links with the principal abiotic factors in the sea. These analyses have made use of extensive empirical data gathered in a wide diversity of seas and oceans by Polish and Russian teams as well as by joint Polish-Russian expeditions. Data sets available on the Internet have also been applied. As a result, a set of more or less complex, semi-empirical models of light-stimulated processes occurring in marine phytoplankton cells has been developed. The trophic type of sea, photo-acclimation and the production of photoprotecting carotenoids, chromatic acclimation and the production of various forms of chlorophyll-antennas and photosynthetic carotenoids, cell adaptation by the package effect, light absorption, photosynthesis, photoinhibition, the fluorescence effect, and the activation of PS2 centres are all considered in the models. These take into account not only the influence of light, but also, indirectly, that of the vertical mixing of water; in the case of photosynthesis, the quantum yield has been also formulated as being dependent on the nutrient concentrations and the temperature of seawater. The bio-optical spectral models of irradiance transmittance in case 1 oceanic waters and case 2 Baltic waters, developed earlier, also are described in this paper. The development of the models presented here is not yet complete and they all need continual improvement. Nevertheless, we have used them on a preliminary basis for calculating various photosynthetic characteristics at different depths in the sea, such as the concentration of chlorophyll and other pigments, and primary production. The practical algorithm we have constructed allows the vertical distribution of these characteristics to be determined from three input data: chlorophyll a concentration, irradiance, and temperature at the sea surface. Since all three data can be measured remotely, our algorithm can be applied as the "marine part" of the remote sensing algorithms used for detecting marine photosynthesis.
Czasopismo
Rocznik
Strony
171--245
Opis fizyczny
Bibliogr. 158 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
autor
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL-76-200 Słupsk, Poland
  • Institute of Physics, Pomeranian Pedagogical Academy in Słupsk, Arciszewskiego 22 B, PL-76-200 Słupsk, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Bibliografia
  • [1] Antoine D., André J. M., Morel A., 1996, Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cycles,10 (1), 56-69.
  • [2] Antoine D., Morel A., 1996, Oceanic primary production: 1. Adaptation of spectral light-photosynthesis model in view of application to satellite chlorophyll observations, Global Biogeochem. Cycles,10 (1), 42-55.
  • [3] Babin M., Morel A., Claustre H., Bricaud A., Kolber Z., Falkowski P. G., 1996a, Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems, Deep-Sea Res., 43, 1241-1272.
  • [4] Babin M., Morel A., Gentili B., 1996b, Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence, J. Remote Sens.,17 (1), 2417-2448.
  • [5] Babin M., Sadoudi N., Lazzara L., Gostan J., Partensky F., Bricaud A., Veldhuis M., Morel A., Falkowski P. G., 1996c, Photoacclimation strategy of Prochlorococcus sp. and consequences on large scale variations of photosynthetic parameters, Ocean Optics 13, Proc. SPIE, 2963, 314-319.
  • [6] Baker K. S., Smith R. C., 1982, Bio-optical classification and model of natural waters 2, Limnol. Oceanogr., 27 (3), 500-509.
  • [7] Bannister T. T., 1979, Quantitative description of steady state nutrient-saturated algal growth including adaptation, Limnol. Oceanogr., 24, 76-96.
  • [8] Belayev V. I., 1987, Modelling of marine systems, Nauk. Dumka, Kiyev, (in Russian).
  • [9] Bidigare R., 1992a, tt007 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [10] Bidigare R., 1992b, tt008 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [11] Bidigare R., 1992c, tt011 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [12] Bidigare R., 1992d, tt012 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [13] Bidigare R., 1995a, ttn-45 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [14] Bidigare R., 1995b, ttn-50 Pigments, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [15] Bidigare R., Ondrusek M. E., Morrow J. H., Kiefer D. A., 1990, ‘In vivo’ absorption properties of algal pigments, Ocean Optics 10, Proc. SPIE, 1302, 290-302.
  • [16] Bricaud A., Babin M., Morel A., Claustre H., 1995, Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterisation, J. Geophys. Res., 100, 13321-13332.
  • [17] Bricaud A., Morel A., Babin M., Allali K., Claustre H., 1998, Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res.,103 (C13), 31033-31044.
  • [18] Bougis P., 1976, Marine plankton ecology, North-Holland Publ. Co., Amsterdam, 355 pp.
  • [19] Cleveland J. S., Perry M. J., Kiefer D. A., Talbot M. C., 1989, Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea, J. Mar. Res., 47 (4), 869-886.
  • [20] Czyszek W., Wensierski W., Dera J., 1979, Inflow and absorption of light energy in Baltic waters, Stud. i Mater. Oceanol., 26, 103-140, (in Polish).
  • [21] Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3)-(4), 237-250.
  • [22] Dera J., 1963a, A probe for studying the stratification of water masses in the sea, Acta Geophys. Pol., 11, 179-185, (in Polish).
  • [23] Dera J., 1963b, Some optical properties of the waters of the Gulf of Gdańsk as indices of the structure of its water masses, Acta Geophys. Pol., 13, 15-39, (in Polish).
  • [24] Dera J., 1967, Measurements of optical quantities characterizing the conditions of photosynthesis in the Gulf of Gdańsk, Acta Geophys. Pol., 15, 187-208.
  • [25] Dera J., 1992, Marine physics, Elsevier, Amsterdam, 516 pp.
  • [26] Dera J., 1995, Underwater irradiance as a factor affecting primary production, Diss. and monogr., Inst. Oceanol. PAS, Sopot, 7, 110 pp.
  • [27] Dera J., 2003, Institute of Oceanology, Polish Academy of Sciences – 50 year history, Oceanologia, 45 (1), 133-168.
  • [28] Dera J., Gohs L., Woźniak B., 1978, Experimental study of the composite parts of the light-beam attenuation process in the waters of the Gulf of Gdańsk, Oceanologia, 10, 5-26.
  • [29] Dera J., Hapter R., Malewicz B., 1975, Fluctuation of light in the euphotic zone and its influence on primary production of organic matter, Merentutkimuslait. Julk./Havsforskningsinst. Skr. 239, 58-66.
  • [30] Dera J., Olszewski J., 1967, On the natural irradiance fluctuation affecting photosynthesis in the Sea, Acta Geophys. Pol., 15, 351-364.
  • [31] Dera J., Olszewski J., 1978, Experimental study of short-period irradiance fluctuation under an undulated sea surface, Oceanologia, 10, 27-49.
  • [32] Dera J., Stramski D., 1986, Maximum effects of sunlight focusing under a wind disturbed sea surface, Oceanologia, 23, 15-42.
  • [33] Duntley S. Q., 1962, Underwater visibility, [in:] The sea, Vol. 1. Physical oceanography, pp. 452-455, M. N. Hill (ed.), Wiley, New York.
  • [34] Duntley S. Q., 1963, Light in the sea, J. Opt. Soc. Am., 53, 214-233.
  • [35] Dybern B. (ed.), 1989, Patchiness in the Baltic Sea, ICES Cooper. Res. Rep. No. 201.
  • [36] Dybern B. (ed.), 1991, Baltic Sea Patchiness Experiment – PEX’ 86, Vols. 1 and 2, ICES Cooper. Res. Rep. No. 163.
  • [37] Eppley R. W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull. Natl. Oceanic. Atoms. Am. (US), 70, 1063-1085.
  • [38] Eppley R. W., Coatsworth J. L., Solzano L., 1969, Studies of nitrate reductase in marine phytoplankton, Limnol. Oceanogr., 14 (2), 194-205.
  • [39] Eppley R. W., Sharp J. H., 1975, Photosynthetic measuremnts in the central North Pacific: the dark loss of carbon in 24-h measurements, Limnol. Oceanogr., 20, 981-987.
  • [40] Falkowski P. G., Kiefer D. A., 1985, Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass, J. Plankton Res., 7, 715-731.
  • [41] Falkowski P.G., Wyman K., Ley A. C., Mauzerall D., 1986, Relationship of steady-state photosynthesis to fluorescence in eukaryotic algae, Biochim. Biophys. Acta, 829, 183-192.
  • [42] Ficek D., 2001, Modelling the quantum yield of photosynthesis in different marine basins, Rozpr. i monogr., Inst. Oceanol. PAN, Sopot, 14, 224 pp., (in Polish).
  • [43] Ficek D., Ostrowska M., Kuzio M., Pogosyan S. I., 2000a, Variability of the portion of functional PS2 reaction centres in the light of a fluorometric study, Oceanologia, 42 (2), 243-249.
  • [44] Ficek D., Woźniak B., Majchrowski R., Ostrowska M., 2000b, Influence of nonphotosynthetic pigments on the measured quantum yield of photosynthesis, Oceanologia, 42 (2), 231-242.
  • [45] Geider R. J., Greene R. M., Kolber Z., MacIntyre H. L., Falkowski P.G., 1993, Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic, Deep-Sea Res., 40 (6), 1205-1224.
  • [46] Gershanovich D. E., Muromtsev A. M., 1982, Oceanological principles of the biological productivity of the world ocean, Gidrometeoizdat, Leningrad, 320 pp., (in Russian).
  • [47] Goericke R., 1995a, ttn043, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [48] Goericke R., 1995b, ttn049, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [49] Goericke R., 1995c, ttn054, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [50] Gohs L., Dera J., Gędziorowska D., Hapter R., Jonasz M., Prandke H., Siegel H., Schenkel G., Olszewski J., Woźniak B., Zalewski S. M., 1978, Untersuchungen zur Wechselwirkung zwischen den optischen, physikalischen, biologischen und chemischen Umweltfaktoren in der Ostsee aus den Jahren 1974, 1975 und 1976, Geod. Geophys. Veröff. (ADW, DDR), R. IV, H. 25, 176 pp.
  • [51] Gordon H. R., 2002, Inverse methods in hydrologic optics, Oceanologia, 44 (1), 9-58.
  • [52] Grant B. R., 1967, The action of light on nitrate and nitrite assimilation by the marine chlorophyte Dunaliella tertiolecta (Butcher), J. Gen. Microbiol., 48 (3), 379-389.
  • [53] Hapter R., Wensierski W., Dera J., 1973, The daylight in the euphotic zone of the Baltic Sea, Stud. i Mater. Oceanol., 7, 3-48, (in Polish).
  • [54] Hulst van de H. C., 1981, Light scattering by small particles, Dover Publ. Inc., New York, 470 pp.
  • [55] Jerlov N. G., 1961a, Irradiance in the sea in relation to particle distribution, Symp. on Radiant Energy in the Sea (Helsinki), IUGG Monogr. No. 10, 3-8.
  • [56] Jerlov N. G., 1961b, Optical measurements in the eastern North Atlantic, Göteborg Medd. Oceanogr. Inst., 8 (B), 1-39.
  • [57] Jerlov N. G., 1964, Optical classification of ocean water, [in:] Physical aspects of light in the sea, pp. 45-49, Univ. Hawaii Press, Honolulu.
  • [58] Jerlov N. G., 1976, Marine optics, Elsevier, Amsterdam, 194 pp.
  • [59] Jerlov N. G., 1978, The optical classification of sea water in the eutrophic zone, Inst. Phys. Oceanogr., Copenhagen Univ., Rep. No. 36, 46 pp.
  • [60] Kaczmarek S., Dera J., 1998, Radiation flux balance of the sea-atmosphere system over the southern Baltic Sea, Oceanologia, 40 (4), 277-303.
  • [61] Kaczmarek S., Woźniak B., 1995, The application of the optical classification of waters in the Baltic Sea (Case 2 Waters), Oceanologia, 37 (2), 285-297.
  • [62] Karabashev G. S., 1987, Fluorescence in the ocean, Gidrometeoizdat, Leningrad, 200 pp., (in Russian).
  • [63] Ketchum B. H., 1939, The absorption of phoshate and nitrate by illuminated cultures of Nitzschia closterium, Am. J. Bot., 4, 26-50.
  • [64] Kiefer D. A., Kremer J. N., 1981, Origins of vertical patterns of phytoplankton and nutrients in the temperature, open ocean: a stratigraphic hypothesis, Deep-Sea Res., 28 (A), 1087-1105.
  • [65] Kiefer D. A., Mitchell B. G., 1983, A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, Limnol. Oceanogr., 28, 770-776.
  • [66] Koblentz-Mishke O. I. (ed.), 1987, The ecosystems of the Baltic Sea in May-June 1984, Inst. Okeanol. AN SSSR, Moskva, 439 pp., (in Russian).
  • [67] Koblentz-Mishke O. I., Vedernikov V. I., 1977, Primary production, [in:] Ocean biology, Vol. 2, pp. 183-208, M. E. Vinogradov (ed.), Nauka, Moskva, (in Russian).
  • [68] Koblentz-Mishke O. I., Woźniak B., Ochakovskiy Yu. E. (eds.), 1985, Utilisation of solar energy in the photosynthesis of the Baltic and Black Sea phytoplankton, Inst. Okeanol. AN SSSR, Moskva, 336 pp., (in Russian).
  • [69] Kolber Z., Falkowski P.G., 1992, Fast Repetition Rate (FRR) fluorometer for making ‘in situ’ measurements of primary productivity, Proc. Ocean’ 92 Conf., Newport, Rhode Island, 637-641.
  • [70] Kolber Z., Falkowski P.G., 1993, Use of active fluorescence to estimate phytoplankton photosynthesis ‘in situ’, Limnol. Oceanogr., 38 (8), 1646-1665.
  • [71] Kowalczuk P., 1999, Seasonal variability of yellow substance absorption in the surface layer of the Baltic Sea, J. Geophys. Res., 104 (C12), 30047-30058.
  • [72] Kremer J. N., Nixon S. W., 1978, A coastal marine ecosystem: simulation and analysis, Springer Verl., Berlin-Heidelberg, 24, 210 pp.
  • [73] Krey J., Babenerd B., 1976, Phytoplankton production – atlas of the International Indian Ocean Expedition, Inst. Mereskunde – Kiel Univ., 70 pp.
  • [74] Kuśmierczyk-Michulec J., De Leeuw G., Robles Gonzales C., 2002, Empirical relationship between aerosol mass concentrations and Angstrom parameter, Geophys. Res. Lett., 29 (7), 10.1029/2001GL014128, pp. 49-1, 49-4.
  • [75] Lewis M. R., Cullen J. J., Platt T.,1983, Phytoplankton and thermal structure in the upper ocean: consequences of non-uniformity in the chlorophyll profile, J. Geophys. Res., 88, 2565-2570.
  • [76] Ley A. C., Mauzerall D., 1982, Absolute absorption cross sections for photosystem II and minimum quantum requirement for photosynthesis in Chlorella vulgaris, Biochim. Biophys. Acta, 680, 95-106.
  • [77] Majchrowski R., 2001, Influence of irradiance on the light absorption characteristics of marine phytoplankton, Stud. i rozpr., Pom. Akad. Pedag., Słupsk, 1, 131 pp., (in Polish).
  • [78] Majchrowski R., Ostrowska M., 1999, Modified relationships between the occurrence of photoprotecting carotenoids of phytoplankton and Potentially Destructive Radiation in the sea, Oceanologia, 41 (4), 589-599.
  • [79] Majchrowski R., Ostrowska M., 2000, Influence of photo- and chromatic acclimation on pigment composition in the sea, Oceanologia, 42 (2), 157-175.
  • [80] Majchrowski R., Woźniak B., Dera J., Ficek D., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 2. Practical applications of the model, Oceanologia, 42 (2), 191-202.
  • [81] Marra J., 1995, ttn054, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [82] Monin A. S., Shifrin K. S. (eds.), 1974, Hydrophysical and hydrotechnical examination of the Atlantic and Pacific, Nauka, Moskva, 328 pp., (in Russian).
  • [83] Mordasova N. V., 1976, The distribution of chlorophyll a in the world ocean, OI ser. 9 (3), CNIITEIRH SSSR, Moskva, 49 pp., (in Russian).
  • [84] Morel A., 1988, Optical modelling of the upper ocean in relation to its biogenous matter content (case 1 waters), J. Geophys. Res., 93 (C), 10.749-10.768.
  • [85] Morel A., 1991, Light and marine photosynthesis: a spectral model with geochemical and climatological implications, Prog. Oceanogr., 26, 263-306.
  • [86] Morel A., Antoine D., Babin M., Dandonneau Y., 1996, Measured and modeled primary production in the northeast Atlantic (Eumeli JGOFS program): the impact of natural variations in photosynthetic parameters on model predictive skill, Deep-Sea Res., 43, 1273-1304.
  • [87] Morel A., Berthon J. F., 1989, Surface pigments, algal biomass profiles and potential production of the euphotic layer: relationships re-investigated in view of remote sensing applications, Limnol. Oceanogr., 34 (8), 1545-1562.
  • [88] Morel A., Bricaud A., 1981, Theoretical results concerning light absorption in a discrete medium and application to specific absorption of phytoplankton, Deep-Sea Res., 28, 1375-1393.
  • [89] Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722.
  • [90] Moroshkin K. V. (ed.), 1973, Formation of biological productivity and bottom sediments as related to ocean circulation in the South-Eastern Atlantic, Kaliningrad Book Publ., 336 pp., (in Russian).
  • [91] Newton J., 1992a, ttt007 par, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [92] Newton J., 1992b, tt008 par, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [93] Newton J., 1992c, tt011 par, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [94] Oceanologia 15, 1983, Materials of the Polish Academy of Sciences, II Antarctic Expedition, pp. 7-218, Ossolineum, Wrocław.
  • [95] Oceanologia 28, 1990, Materials of the International Eccological Experiment Sopot-87, pp. 5-49, 61-67, 123-126, Ossolineum, Wrocław.
  • [96] Olszewski J., 1973, An analysis of underwater visibility conditions in the sea, based on the example of the Gulf of Gdańsk, Oceanologia, 2, 153-225, (in Polish).
  • [97] Olszewski J., 1983, The basic optical properties of the water in the Ezcurra Inlet, Oceanologia, 15, 111-139.
  • [98] Olszewski J., 1984, A method of measurement of simplified directional distribution of radiance, Oceanologia, 18, 51-58.
  • [99] Olszewski J. (ed.), 1995, Marine physics (8), Stud. i Mater. Oceanol., 68, 149 pp.
  • [100] Ooms M. (ed.), 1996, ULISSE (Underwater Light Seatruth Satellite Experiment), Europ. Commiss. Joint Res. Centre, Ispra, Italy, Spec. publ., 1.96.29, 506 pp.
  • [101] Ostrowska M., 2001, Using the fluorometric method for marine photosynthesis investigations in the Baltic, Rozpr. i monogr., Inst. Oceanol. PAN, Sopot, 15, 194 pp., (in Polish).
  • [102] Ostrowska M., Majchrowski R., Matorin D. N., Woźniak B., 2000a, Variability of the specific fluorescence of chlorophyll in the ocean. Part 1. Theory of classical ‘in situ’ chlorophyll fluorometry, Oceanologia, 42 (2), 203-219.
  • [103] Ostrowska M., Matorin D. N., Ficek D., 2000b, Variability of the specific fluorescence of chlorophyll in the ocean. Part 2. Fluorometric method of chlorophylla determination, Oceanologia, 42 (2), 221-229.
  • [104] Parsons T. R., Takahashi M., Hargrave B., 1977, Biological oceanographic processes, (2nd edn.) Pergamon Press, Oxford., 332 pp.
  • [105] Pelevin V. N., Rutkovskaya V. A., 1978, A review of photosynthetic radiation in the waters of the Pacific Ocean, Okeanologiya, 18 (4), 619-626, (in Russian).
  • [106] Piskozub J., Flatau P. J., Zaneveld J. R. V., 2001, Monte Carlo study of the scattering error of a quartz reflective absorption tube, J. Atmos. Ocean. Technol., 18 (3), 438-445.
  • [107] Platt T., Gallegos C. L., Harrison W. G., 1980, Photoihibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687 pp.
  • [108] Platt T., Sathyendranath S., Cavarhill C. M., Lewis M. R., 1988, Ocean primary production and available light: further algorithms for remote sensing, Deep-Sea Res., 35 (6), 855-879.
  • [109] Platt T., Sathyendranath S., Ulloa O., Harrison W. G., Hoepffner N., Goes J., 1992, Nutrients control of phytoplankton photosynthesis in the Western North Atlantic, Nature, 356, 229-231.
  • [110] Ponomareva L. A., Pasternak F. A. (eds.), 1985, Studies on the plankton of the Sea of Japan, Acad. Sci. USRR, P. P. Shirshov Inst. Oceanol., Moscow, (in Russian).
  • [111] Renk H., 1973, Primary production in the waters of the southern Baltic, Stud. i Mater. MIR, Gdynia, A/12, 5-126, (in Polish).
  • [112] Rozwadowska A., Cahalan R. F., 2002, Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice, J. Geophys. Res., 107 (D19), 4387, doi: 10.1029/2002JD002092.
  • [113] Rubin A. B., 1995, Principles of organisation and regulation of primary processes of photosynthesis, OHTI PHC RAN, Moskva, 33, 38 pp., (in Russian).
  • [114] Rubin A. B., Kononenko A. A., Shaitan K. V., Paschenko V. Z., Riznichenko G. Yu., 1994, Electron transport in photosynthesis, Biophysics, 39 (2), 173-195.
  • [115] Sathyendranath S., Platt T., Cavarhill C. M., Warnock R. E., Lewis M. R., 1989, Remote sensing of oceanic primary production: computations using a spectral model, Deep-Sea Res., 36 (3), 431-453.
  • [116] Semina G. I. (ed.), 1981, Studies of oceanic phytoplankton, Acad. Sci. USRR, P. P. Shirshov Inst. Oceanol., Moscow, (in Russian).
  • [117] Semina G. I. (ed.), 1985, Ecology of marine phytoplankton, Acad. Sci. USRR, P. P. Shirshov Inst. Oceanol., Moscow, (in Russian).
  • [118] Siegoczyński R. M., Wiśniewski R., Woźniak B., 1994, Small-angle light scattering study of oleic acid at high pressure, pp. 101-104, High Pressure in Material Science and Geoscience, XXXII Ann. Meet. Europ. High Pressure Res. Group, Brno.
  • [119] Smith R. C., Baker K. S., 1978, Optical classification of natural waters, Limnol. Oceanogr., 23 (2), 260-267.
  • [120] Smith R. C., Prezelin B. B., Bridigare R. R., Baker K. S., 1989, Bio-optical modeling of photosynthetic production in coastal waters, Limnol. Oceanogr., 34 (8), 1524-1544.
  • [121] Steemann Nielsen E., 1975, Marine photosynthesis with special emphasis on the ecological aspect, Elsevier, Amsterdam, 141 pp.
  • [122] Szulejkin W. W., 1959, A short course in marine physics, Leningrad, (in Russian).
  • [123] Trees C., 1995b, ttn045, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [124] Trees C., 1995c, ttn053, U. S. JGOFS Data System, http:/usjgofs.whoi.edu/jg/dir/jgofs/.
  • [125] Vinogradov M. E. (ed.), 1971, Functioning of pelagic communities in the tropical regions of the ocean – materials of the 44th cruise of r/v ‘Vityaz’, Nauka, Moskva, (in Russian), 271 pp.
  • [126] Vinogradov M. E. (ed.), 1980, Pelagic ecosystems in the Black Sea, Nauka, Moskva, (in Russian), 250 pp.
  • [127] Vinogradov M. E. (ed.), 1985, The structure and functioning of the coastal ecosystem of the western Black Sea, Inst. Okeanol. AN SSSR, Moskva, (in Russian).
  • [128] Vinogradov M. E. (ed.), 1991, The coastal ecosystems of the western Black Sea, VNIRO, Moskva, (in Russian), 388 pp.
  • [129] Vinogradov M. E., Ozmidov R. V. (eds.), 1986, Investigations of pelagic ecosystems in the Black Sea, Acad. Sci. USRR, P. P. Shirshov Inst. Oceanol., Moscow, (in Russian), 277 pp.
  • [130] Witkowski K., Król T., Zieliński A., Kuteń E., 1998, A light-scattering matrix for unicellular marine phytoplakton, Limnol. Oceanogr., 43 (5), 859-869.
  • [131] Woźniak B., 1973, An investigation of the influence of the components of seawater on the light field in the sea, Stud. i Mater. Oceanol., 6, 69-132, (in Polish).
  • [132] Woźniak B., 1990, Statistical relations between photosynthesis and abiotic conditions of the marine environment; an initial prognosis of the World Ocean productivity ensuing from warming up of the Earth, Oceanologia, 29, 147-174.
  • [133] Woźniak B., 2000, Algorithm of Gaussian analysis of marine phytoplankton absorption spectra set – for using in BIOCOLOR programme, Słupsk. Pr. Mat.-Przyrod., 13a, 329-341.
  • [134] Woźniak B., Dera J., 2000, Luminescence and photosynthesis of marine phytoplankton – a brief presentation of new results, Oceanologia, 42 (2), 137-156.
  • [135] Woźniak B., Dera J., 2001, Bio-optical modelling of the photo-physiological properties of marine algae, pp. 39-49, Proc. St. Petersburg Int. Conf. ‘Current problems in optics of natural waters’ (ONW-2001), September 25-28, 2001.
  • [136] Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modelling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.
  • [137] Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 2000, Model of the ‘in vivo’ spectral absorption of algal pigments. Part 1. Mathematical apparatus, Oceanologia, 42 (2), 177-190.
  • [138] Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., 2002a, Dependence of the photosynthesis quantum yield in oceans on environmental factors, Oceanologia, 44 (4), 439-459.
  • [139] Woźniak B., Dera J., Ficek D., Ostrowska M., Majchrowski R., Kaczmarek S., Kuzio M., 2002b, The current marine bio-optical study of phytoplankton, Oppt. Appl., 32 (1), 731-747.
  • [140] Woźniak B., Dera J., Koblentz-Mishke O. I., 1992a, Bio-optical relationships for estimating primary production in the Ocean, Oceanologia, 33, 5-38.
  • [141] Woźniak B., Dera J., Koblentz-Mishke O. I., 1992b, Modelling the relationship between primary production, optical properties, and nutrients in the sea, Ocean Optics 11, Proc. SPIE, 1750, 246-275.
  • [142] Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997a, ‘IO PAS initial model’ of marine primary production for remote sensing application, Oceanologia, 39 (4), 377-395.
  • [143] Woźniak B., Dera J., Majchrowski R., Ficek D., Koblentz-Mishke O. I., Darecki M., 1997b, Statistical relationships between photosynthesis and abiotic conditions in the ocean – the IO PAS initial model for remote sensing application, Proc. SPIE, 3222, 516-528.
  • [144] Woźniak B., Dera J., Semovski S., Hapter R., Ostrowska M., Kaczmarek S., 1995a, Algorithm for estimating primary production in the Baltic by remote sensing, Stud. i Mater. Oceanol., 68, 91-123.
  • [145] Woźniak B., Hapter R., 1985, Absorption of photosynthetically active radiation in the euphotic zone of the Baltic (July 1980) and Black Sea (October 1978), [in:] Utilisation of solar energy in the process of the Baltic and Black Sea phytoplankton, O. I. Koblentz-Mishke, B. Woźniak & Yu. E. Ochakovskiy (eds.), Inst. Okeanol., AN SSSR, Moskva, 86-115. (in Russian).
  • [146] Woźniak B., Hapter R., Dera J., 1989, Light curves of marine phytoplankton photosynthesis in the Baltic, Oceanologia, 27, 61-78.
  • [147] Woźniak B., Hapter R., Jonasz M., 1980, An introductory analysis of the rate and energetic efficiency of photosynthesis in the Gulf of Gdańsk, [in:] Baltic ecosystems, part 2, pp. 400-414, G. Okołotowicz (ed.), MIR, Gdynia.
  • [148] Woźniak B., Montwiłł K., 1973, Methods and techniques of optical measurements in the sea, Stud. i Mater. Oceanol., 7, 71-108, (in Polish).
  • [149] Woźniak B., Ostrowska M., 1990a, Composition and resources of photosynthetic pigments of the sea phytoplankton, Oceanologia, 29, 91-115.
  • [150] Woźniak B., Ostrowska M., 1990b, Optical absorption properties of phytoplankton in various seas, Oceanologia, 29, 117-146.
  • [151] Woźniak B., Pelevin V. N., 1991, Optical classifications of the seas in relation to phytoplankton characteristics, Oceanologia, 31, 25-55.
  • [152] Woźniak B., Smekot-Wensierski W., Darecki M., 1995b, Semi-empirical modelling of backscattering and light reflection coefficients in WC1 seas, Stud. i Mater. Oceanol., 68, 61-90.
  • [153] Woźniak S. B., 1996, Mathematical spectral model of solar irradiance reflectance and transmittance by a wind ruffled sea surface. Part 1. The physical problem and mathematical apparatus, Oceanologia, 38 (4), 447-467.
  • [154] Woźniak S. B., 1997, Mathematical spectral model of solar irradiance reflectance and transmitance by a wind-ruffled sea surface. Part 2. Modelling results and aplication, Oceanologia, 39 (1), 17-34.
  • [155] Wróblewski J. S., 1989, A model of the spring bloom in the North Atlantic and its impact on ocean optics, Limnol. Oceanogr., 34 (8), 1563-1571.
  • [156] Zapadka T., Woźniak S. B., 2000, Preliminary comparison between various models of the long-wave radiation budget of the sea and experimental data from the Baltic Sea, Oceanologia, 42 (3), 359-369.
  • [157] Zapadka T., Woźniak S. B., Woźniak B., 2001, A simple formula for the net long-wave radiation flux in the southern Baltic Sea, Oceanologia, 43 (3), 265-277.
  • [158] Zvalinsky V. I., 1986, Principles of influence of light intensity and spectral composition on marine phytoplankton, Ph. D. thesis (2nd degree), Akad. Nauk Bel. SSR, Minsk, (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0013-0064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.