PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dualities for Algebras of Fitting's Many-Valued Modal Logics

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stone-type duality connects logic, algebra, and topology in both conceptual and technical senses. This paper is intended to be a demonstration of this slogan. In this paper we focus on some versions of Fitting’s L-valued logic and L-valued modal logic for a finite distributive lattice L. Building upon the theory of natural dualities, which is a universal algebraic theory of categorical dualities, we establish a Jonsson-Tarski-style duality for algebras of L-valued modal logic, which encompasses J´onsson-Tarski duality for modal algebras as the case L = 2. We also discuss how the dualities change when the algebras are enriched by truth constants. Topological perspectives following from the dualities provide compactness theorems for the logics and the effective classification of categories of algebras involved, which tells us that Stone-type duality makes it possible to use topology for logic and algebra in significant ways.
Wydawca
Rocznik
Strony
273--294
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Department of Humanistic Informatics, Graduate School of Letters, Kyoto University, Yoshida- Honmachi, Sakyo, Kyoto, 606-8501, Japan, maruyama@i.h.kyoto-u.ac.jp
Bibliografia
  • [1] S. Abramsky, "Domain theory in logical form", Ann. Pure Appl. Logic 51 (1991) 1-77.
  • [2] S. Awodey, Category theory, OUP, 2006.
  • [3] P. Blackburn, M. de Rijke and Y. Venema, Modal logic, CUP, 2001.
  • [4] M. M. Bonsangue, "Topological duality in semantics", Electr. Notes Theor. Comput. Sci. 8 (1998).
  • [5] C. Brink and I. M. Rewitzky, A paradigm for program semantics: power structures and duality, CSLI Publications, 2001.
  • [6] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer-Verlag, 1981.
  • [7] R. L. O. Cignoli, E. J. Dubuc, and D. Mundici, "Extending Stone duality to multisets and locally finite MV-algebras", J. Pure Appl. Algebra, 189 (2004) 37-59.
  • [8] D. M. Clark and B. A. Davey, Natural dualities for the working algebraist, CUP, 1998.
  • [9] A. Connes, Noncommutative geometry, Academic Press, 1994.
  • [10] A. Chagrov and M. Zakharyaschev,Modal logic, OUP, 1997.
  • [11] R. S. Doran and V. A. Belfi, Characterizations of C_-algebras; The Gelfand-Naimark theorems, Marcel Dekker Inc., New York and Basel, 1986.
  • [12] K. Dosen, "Duality between modal algebras and neighbourhood frames", Studia Logica 48 (1989) 219-234.
  • [13] P. E. Eleftheriou and C. D. Koutras, "Frame constructions, truth invariance and validity preservation in manyvalued modal logic", J. Appl. Non-Classical Logics 15 (2005) 367-388.
  • [14] A. Grothendieck and J. Dieudonné, "éléments de géométrie algébrique: I. Le langage des schémas", Publications Mathématiques de l'IHéS 4 (1960) 5-228.
  • [15] G. Hansoul, "A duality for Boolean algebras with operators", Algebra Universalis 17 (1983) 34-49.
  • [16] T. K. Hu, "Stone duality for primal algebra theory", Math. Z. 110 (1969) 180-198.
  • [17] K. Keimel and H. Werner, "Stone duality for varieties generated by a quasi-primal algebra", Mem. Amer. Math. Soc. 148 (1974) 59-85.
  • [18] M. Gehrke and J. Harding, "Bounded lattice expansions", J. Algebra 239 (2001) 345-371.
  • [19] M. Gehrke, H. Nagahashi and Y. Venema, "A Sahlqvist theorem for distributive modal logic", Ann. Pure Appl. Logic 131 (2005) 65-102.
  • [20] M. C. Fitting, "Many-valued modal logics", Fund. Inform. 15 (1991) 235-254.
  • [21] M. C. Fitting, "Many-valued modal logics II", Fund. Inform. 17 (1992) 55-73.
  • [22] M. C. Fitting, "Many-valued non-monotonic modal logics", Lecture Notes in Computer Science 620 (1992) 139-150.
  • [23] M. C. Fitting, "Tableaus for many-valued modal logic", Studia Logica 55 (1995) 63-87.
  • [24] C. D. Koutras and S. Zachos, "Many-valued reflexive autoepistemic logic", Logic Journal of the IGPL 8 (2000) 33-54.
  • [25] C. D. Koutras and P. Peppas, "Weaker axioms, more ranges", Fund. Inform. 51 (2002) 297-310.
  • [26] C. D. Koutras, "A catalog of weak many-valued modal axioms and their corresponding frame classes", J. Appl. Non-Classical Logics 13 (2003) 47-72.
  • [27] Y. Maruyama, "Algebraic study of lattice-valued logic and lattice-valued modal logic", Lecture Notes in Computer Science 5378 (2009) 172-186.
  • [28] Y. Maruyama, "Fuzzy topology and Łukasiewicz logics from the viewpoint of duality theory", Studia Logica 94 (2010) 245-269.
  • [29] Y. Maruyama, "The logic of fuzzy belief and common belief: With emphasis on incomparable beliefs", manuscript.
  • [30] A. Di Nola and P. Niederkorn, "Natural dualities for varieties of BL-algebras", Arch. Math. Log. 44 (2005) 995-1007.
  • [31] H. A. Priestley, "Varieties of distributive lattices with unary operations I", J. Austral. Math. Soc. Ser. A 63 (1997) 165-207.
  • [32] M. H. Stone, "The representation of Boolean algebras", Bull. Amer. Math. Soc. 44 (1938) 807-816
  • [33] L. Straßburger, "What is a logic, and what is a proof?", Logica Universalis Second Edition (2007) 135-152.
  • [34] M. R. Talukder, Natural duality theory with applications to Heyting algebras and generalised modal algebras, Ph.D. thesis, La Trobe University, 2002.
  • [35] B. Teheux, "A duality for the algebras of a Łukasiewicz n+1-valuedmodal system", Studia Logica 87 (2007) 13-36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.