PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Historia twierdzenia Gaussa-Bonneta i socjologia matematyki

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Strony
63--80
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
Bibliografia
  • [1] C. B. Allendoerfer, The Euler Number of a Riemannian manifold, Amer. J. Math. 62 (1940), 243-248.
  • [2] G. E. Bredon, Topology and Geometry, Graduate Text in Mathematics, New York, 1993.
  • [3] G. E. Bredon, A. Kosinski, Vector fields on _-manifolds, Annals of Math. 84 (1966), 85-90.
  • [4] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds, Annals of Math. 45 (1944), 747-752.
  • [5] W. Fenchel, On the total curvature of Riemannian manifolds, I, J. London Math. Soc. 15 (1940), 15-22.
  • [6] D. H. Gottlieb, On the index of pullback vector fields, Lecture Notes in Mathematics, vol. 1350, Springer-Verlag, 1987.
  • [7] D. H. Gottlieb, Zeroes of pullback vector fields and fixed point theory for bodies, Contemporary Mathematics 96 (1989), 163-179.
  • [8] A. Gray, Tubes, Addison-Wesley, Redwood City California, 1990.
  • [9] D. H. Gottlieb, G. Samaranayake, Index of discontinuous vector fields, New York J. Math. 1 (1994/95), 130-148.
  • [10] B. Grünbaum, G. C. Shephard, A new look at Euler's Theorem for polyhedra, Amer. Math. Monthly 101 (1994), 109-128.
  • [11] A. Haefliger, Quelques remarques sur les applications differentiables d'une surface dans le plan, Ann. Inst. Fourier 10 (1960), 47-60.
  • [12] P. J. Hilton, J. Pederson, Euler's Theorem for polyhedra: A Topologist and a Geometer respond, Amer. Math. Monthly 101 (1994), 959-962.
  • [13] M. W. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.
  • [14] H. Hopf, ¨ Uber die Curvatura integra geschlossener Hyperflächen, Math. Ann. 95 (1925), 340-376.
  • [15] H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann. 96 (1927), 225-250.
  • [16] H. Hopf, Differential Geometrie und Topological Gestalt, Jahresbericht der Deutcher Math. Verein. 41 (1932), 209-229.
  • [17] H. Hopf, Differential Geometry in the Large: Seminar Lectures NYU 1946 and Stanford 1956, Lecture Notes in Mathematics, vol. 1000, Springer Verlag, 1983.
  • [18] M. E. Kervaire, Courbure integrale generalisee et homotopie, Math. Ann. 131 (1956), 219-252.
  • [19] I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge University Press, Cambridge, 1976.
  • [20] J. W. Milnor, On the immersion of n-manifolds in (n + 1)-dimensional space, Commentarii Math. Helvetici 30 (1956), 275-284.
  • [21] M. Morse, Singular points of vector fields under general boundary conditions, Amer. J. Math 51 (1929), 165-178.
  • [22] H. Samelson, On immersion of manifolds, Canadian J. Math. 12 (1960), 529-534.
  • [23] H. Samelson, Descartes and Differential Geometry, in: Geometry, Topology, and Physics for Raoul Bott (S. T. Yau, ed.), International Press, Boston, 1995.
  • [24] J. Stillwell, Mathematics and its History, Springer-Verlag, New York, 1974.
  • [25] M. Spivak, A Comprehensive Introduction to Differential Geometry, 2nd ed., vol. 1-5, Publish or Perish, Houston, 1979.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.