PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaves as "crackers", biofilm as "peanut butter" : Exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs [commun.]

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laboratory experiments have shown benthic macroinvertebrates to be capable of consuming heterotrophic organisms which develop on decomposing terrestrial leaves. Questions remain, however, as to whether these microbial biofilms represent a significant energy source to macroinvertebrates within the natural environment compared to that supplied by leaf substrates themselves. A compilation of literature data on field measurements of stable nitrogen isotope ratios for herbivorous macroinvertebrates suggests that assimilation of microbial biofilms may be the principle means by which allochthonous organic matter enters freshwater detrital food webs.
Słowa kluczowe
Rocznik
Strony
110--115
Opis fizyczny
Bibliogr. 62 poz., wykr.
Twórcy
autor
  • Department of Environmental Science, NSAC, Truro, Nova Scotia, Canada Faculty of Graduate Studies, Dalhousie University, Halifax, Nova Scotia, Canada, rfrance@gsd.harvard.edu
Bibliografia
  • 1.Adams S.M. and Agelovric J.W. 1970. Assimilation of detritus and associated bacteria by three species of estuarine animals. Chesapeake Sci. 11:249-254.
  • 2.Baker J.H. and Bradnam L.A. 1976. The role of bacteria in the nutrition of aquatic detritivores. Oecologia 24:95-104.
  • 3.Baldy V., Chauvet E., Charcosset J.Y. and Gessner M.O. 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain of a large river. Aquat. Microb. Ecol. 28:25-36.
  • 4.Barlocher F. 1985. The role of fungi in the nutrition of stream invertebrates. J. Linnean Soc. Bot. 91:83-94.
  • 5.Barlocher F. and Kendrick B. 1975. Leaf-conditioning by microorganisms. Oceologia 20:359-362.
  • 6.Boak A.C. and Goulder R. 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar Biol 73:139-149.
  • 7.Boulton A.J. and Boon P.I. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? Austral. J. Mar. Freshw. Res. 42:1-43.
  • 8.Caraco N.F., Lampman G., Cole J.J., Limburg K.E., Pace M.L., and Fischer D. 1998. Microbial assimilation of DIN in a nitrogen rich estuary: Implications for food quality and isotope studies. Mar Ecol Prog Ser 167:59-71
  • 9.Cummins K.W. 1974. Structure and function of stream ecosystems. Bioscience 24:631-641.
  • 10.Delwiche C.C. and Steyn P. 1970. Nitrogen isotope fractionation in soils and microbial reactions. Plant Soil 48:57-80.
  • 11.DeNiro C.C. and Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45:341-353.
  • 12.Findlay S. and Tenore K. 1982. Nitrogen source for a detritivore: Detritus substrate versus associated microbes. Science 218:371-373.
  • 13.Findlay S.E., Meyer J.L. and Smith P.J. 1984. Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecologia 63:38-42.
  • 14.Findlay S.E., Meyer J.L. and Smith P.J. 1986. Contribution of fungal biomass to the diet of a freshwater isopod (Lirceus sp.). Freshw. Biol. 16:377-385.
  • 15.France R. 1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Mar. Ecol. Prog. Ser. 115:205-207.
  • 16.France R. 1995a. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40:1310-1313.
  • 17.France R.L. 1995b. Source variability in σ 15 N of autotrophs as a potential aid in measuring allochthony to freshwaters. Ecography 18:318-320.
  • 18.France R. 1995c. Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar. Ecol. Prog. Ser. 124:307-312.
  • 19.France R.L. 1996a. Absence or masking of metabolic fractionations of 13 C in a freshwater benthic food web. Freshw. Biol., 36:1-6.
  • 20.France R. 1996b. Ontogenetic shift in crayfish ð13C as a measure of landwater ecotonal coupling. Oecologia 107:239-242.
  • 21.France R.L. 1996c. Scope for use of stable carbon isotopes in discerning the incorporation of forest detritus into aquatic foodwebs. Hydrobiologia 325:219-222.
  • 22.France R.L. 1997a. σ 15 N examination of the Lindeman-Hutchinson-Peters theory of increasing omnivory with trophic height in aquatic foodwebs. Res. Pop. Ecol. 39:121-125.
  • 23.France R.L. 1997b. The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Can. J. Zool. 75:1009-1013.
  • 24.France R.L. 1997c. Macroinvertebrate colonization of woody debris in Canadian Shield lakes following riparian clearcutting. Conserv. Biol. 11:513-527.
  • 25.France R.L. 1997d. Stable carbon and nitrogen isotopic evidence for ecotonal coupling between boreal forests and fishes. Ecol. Freshw. Fish. 6:78-83.
  • 26.France R. 1998a. Density-weighted ð 13 C analysis of detritivory and algivory in littoral macroinvertebrate communities of boreal headwater lakes. Ann. Zool. Fenn. 35:187-193.
  • 27.France R.L. 1998b. Colonization of leaf litter by littoral macroinvertebrates with reference to successional changes in boreal tree composition expected after riparian clear-cutting. Amer. Midl. Nat. 14:314-324.
  • 28.France R.L. and Peters R.H. 1997. Ecosystem differences in the trophic enrichment of 13 C in aquatic foodwebs. Can. J. Fish. Aquat. Sci. 54:1255-1258.
  • 29.France R., Westcott K., del Giorgio P., Klein G.and Kalff J. 1996. Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes. Res. Pop. Ecol. 38:283-287.
  • 30.France R., del Giorgio P. and Westcott K. 1997. Productivity and heterotrophy influences on zooplankton ð 13 C in northern temperate lakes. Aquat. Microb. Ecol. 12:85-93.
  • 31.France R., Chandler M. and Peters R..1998a. Mapping trophic continua of benthic foodwebs: Body size - σ 15 N relationships. Mar. Ecol. Prog. Ser. 174:301-306.
  • 32.France R., Holmquist J., Chandler M. and Cattaneo A. 1998b. σ15N evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system. Mar. Ecol. Prog. Ser. 167:297-299.
  • 33.Fry B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72:2293-2297.
  • 34.Gulis V and Suberkropp K. 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123-134.
  • 35.Hall R.D. and Meyer J.L. 1998. The trophic significance of bacteria in a detritus based stream food web. Ecology 79:1995-2012.
  • 36.Hicks B.J. and Laboyrie J.E. 1999. Preliminary estimates of mass-loss rates, changes in stable isotope composition, and invertebrate colonization of evergreen and deciduous leaves in a Waikato, New Zealand, stream. New Zeal. J Mar Freshw Res 33:221-232.
  • 37.Kaushik N.K. and Hynes H.B.N. 1971. The fate of dead leaves that fall into streams. Archiv. fur Hydrobiol. 68:465-515.
  • 38.Kostalos M. and Seymour L.R. 1976. Role of microbial enriched detritus in the nutrition of Gammarus minus. Oikos 27:512-516.
  • 39.Lehmann M.F., Bernasconi S.M., Barbieri A., McKenzie J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 20:3573-3584.
  • 40.Levinton J.S., Bianchi, T.S. and Stewart, S. 1984. What is the role of particulate organic matter in benthic invertebrate nutrition? Bull. Mar. Sci. 35:270-282.
  • 41.Libes S.M., and Deuser W.G. 1988. The isotope geochemistry of particulate nitrogen in the Peru upwelling area and the Gulf of Maine. Deep Sea Res. Part A 35:517-533.
  • 42.Macko S.A. and Estip M. 1984. Microbial alteration of stable nitrogen and carbon isotopic composition of organic matter. Organ. Geochem. 6:787-790.
  • 43.McGoldrick D.L., Barton D.R., Power M., Scott R.W. and Butler B.J. 2008. Dynamics of bacteria-substrate stable isotope separation: Dependence on substrate availability and implications for aquatic food web studies. Can J Fish Aquat Sci 65:1983-1190.
  • 44.Melillo J.M., Aber J.D., Linkins A.E., Ricca A., Fry B. and Nadelhoffer K.J. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189-198.
  • 45.Miluc T. and Toetz D. 1984. Determination of diets of alpine aquatic insects using stable isotopes and gut analyses. Amer. Midl. Natur. 131:146-155.
  • 46.Minshall G.W. 1978. Autotrophy in stream ecosystems. Bioscience 28:767-771.
  • 47.Moran M.A. and Hodson R.E. 1989. Bacterial secondary production on vascular plant detritus: Relationships to detritus composition and degradation rate. Appl. Environ. Microbiol. 55:2178-2189.
  • 48.Odum W.E., Kirk P.W. and Zieman J.C. 1978. Non-protein nitrogen compounds associated with particles of vascular plant detritus. Oikos 32:363-367.
  • 49.Owens N. 1987. Natural variations in σ 15 N in the marine environment. Adv. Mar. Biol. 24:389-451.
  • 50.Peterson B.J. and Fry B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Sysem. 18:293-320.
  • 51.Post D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703-718.
  • 52.Rice D.L. and Hanson R.B. 1984. A kinetic model for detritus nitrogen: Role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35:326-340.
  • 53.Saino T and Hattori A. 1980. 15N natural abundance in oceanic suspended particulate matter. Science 286:2485-2488.
  • 54.Schaefer P. and Ittekkot V. 1993. Seasonal variability of σ15N in settling particles in the Arabian Sea and its paleogeochemical significance. Nature 80:511-513.
  • 55.Steedman R.J. 2000. Effects of experimental clearcut logging on water quality in three small boreal forest lake trout (Salvelinus namaycush) lakes. Can. J. Fish. Aquat. Sci. 57(Suppl. 2):92-96.
  • 56.Steedman R.J. 2003. Littoral fish response to experimental logging around small boreal Shield lakes. North Amer. J. Fish. Manag. 23:392-403.
  • 57.Suberkropp K. and Klug M.J. 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707-709.
  • 58.Turner G.L., Bergersen F.J. and Tantala H. 1983. Natural enrichment of 15 N during decomposition of plant material in soil. Soil Biol. Biochem. 15:495-497.
  • 59.Vanderklift M.A. and Ponsard S. 2003. Sources of variation in consumer-diet σ 15 N enrichment: A meta-analysis. Oecologia 20:169-182.
  • 60.Vander Zanden M.J. and Rasmussen J.B. 2001. Variation in σ 15 N and σ 13 C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46:2061-2066.
  • 61.Webster J.R. and Benfield E.F. 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. System. 17:567-594.
  • 62.Wellman R.P., Cook F.D. and Krouse H.R. 1968. Nitrogen-15: Microbial alteration of abundance. Science 161:269-270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.