PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composition and density of plant-associated invertebrates in relation to environmental gradients and hydrological connectivity of wetlands

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Frequency of occurrence and intensity of the raised water stage determine the structure of invertebrates in the wetland ecosystems of wetland river floodplains. In order to assess the relationships in a regulated, lowland river of moderate climate, samples of water and invertebrates inhabiting submerged shoots of reed Phragmites australis Trin Ex. Stued. were taken from the middle section of the Słupia River and five of its oxbow lakes. The wetlands differed in hydrological activity (type of connection with the river). Redundancy Analysis (RDA) revealed that hydrological connectivity accounted for 37% of the total invertebrate variance, physico-chemical conditions - 21%, while the trophic state only - 7%. Linear regression showed that the highest species richness was observed in oxbow lakes connected to the river with one arm. Diversity and species evenness increased with the increasing hydrological connectivity. The study revealed that plant-associated invertebrates inhabiting wetlands can be the main source for the reconstruction of biodiversity after floods.
Rocznik
Strony
52--63
Opis fizyczny
Bibliogr. 48 poz., tab., wykr.
Twórcy
autor
Bibliografia
  • 1.Amoros C., Bornette G., 2002, Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol., 47: 761-776
  • 2.Amoros C., Roux A.L., 1988, Interaction between water bodies within the floodplain of large rivers: function and development of connectivity. Minstersche Geographische Arbeiten, 29: 125-130
  • 3.American Public Health Association (APHA) 1989, Standard methods for the examination of water and wastewater. 17Th ed. American Public Health Association (APHA), Washington D. C., USA
  • 4.Baffico G.D., 2001, Variations in the periphytic community structure and dynamics of Lake Nahuel Huapi (Patagonia, Argentina). Hydrobiologia, 455: 79-85
  • 5.Brönmark C., 1989, Interactions between epiphytes, macrophytes and freshwater snails: a review. J. Moll. Stud., 55: 299-311
  • 6.Cataneo A., 1987, Periphyton in like of different trophy. Can. J. Fish. Aquat. Sci., 44: 296-303
  • 7.Clausen B., Biggs B.J.F, 1997, Relationships between benthic biota and hydrological indices in New Zealand streams. Freshw. Biol., 38: 327-342
  • 8.Drake J.A., 1984, Species Aggregation: The influence of detritus in a benthic invertebrates community. Hydrobiology, 112: 109-115
  • 9.Dermott R.M., 1988, Zoobenthic distribution and biomass in the Turkey lakes. Can. J. Fish. Aquat. Sci. 45: 107-114
  • 10.Dynesius M., Nilsson C., 1994, Fragmentation and flow regulation of river systems in the northern 3rd of the world. Science, 266: 753-762
  • 11.Gallardo B., 2009, Aquatic community patterns across environmental gradients in a Mediterranean floodplain and their application to ecosystem restoration. PhD dissertation, Zaragosa-Girona
  • 12.Gallardo B., Garcia M., Cabezas A., Gonzalez E., Gonzalez M., et al. 2008, Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci., 70: 248-258
  • 13.Gasith A., Resh V.H., 1999, Streams in Mediterranean climate regions: Abiotic influences and biotic responses to predictable seasonal events. Annu. Rev. Ecol. Syst., 30: 51-81
  • 14.Gibbins C.N., Dilks C.F., Malcolm R., Soulsby C., Juggins S., 2001, Invertebrate communities and hydrological variation in Cairngorm mountain streams. Hydrobiologia 462: 205-219
  • 15.Glińska-Lewczuk K., 2009, Water quality dynamics of oxbow lakes in young glacial landscape of NE Poland in relation to their hydrological connectivity. Ecol. Eng., 35: 25-37
  • 16.Gotelli N.J., Entsminger G.L., 2004. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT 05465.
  • 17.Hann B.J., 1991, Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwat. Biol., 26: 87-96
  • 18.Hill B.H., Herlihy A.T., Kaufmann P.R., Stevenson R.J., McCormick F.H., Johnson C.B., 2000, The use of periphyton assemblage data as an index of biotic integrity. J. N. Am. Benthol. Soc., 19: 50-67
  • 19.Heino J., 2000, Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia, 418: 229-242
  • 20.Jentsch A., Kreyling J., Beierkuhnlein C., 2007, A new generation of climate-change experiments: events, not trends. Fron. Ecol. Environ., 5: 365-374
  • 21.Kajak Z., 1988. Considerations on benthos abundance in freshwaters, its factors and mechanisms. Int. Revue ges. Hydrobiol. 73: 5-19
  • 22.Kasprzak K., Niedbała W., 1981, Biocenotic indices used for the analysis of quantitative data. [in]: Methods used in soil zoology, Eds. Górny M., Grüm L., PWN, Warszawa, pp. 397-402 (in Polish)
  • 23.Legendre P., Troussellier M., 1988, Aquatic heterotrophic bacteria - modelling in the presence of spatial auto-Correlation. Limnol. Oceanogr., 33: 1055-1067
  • 24.Macioszczyk A., 1987, Hydrogeochemia. Wyd. Geol. Warszawa, pp. 475
  • 25.Mallory M.L., Blancher P.X., Weatherhead P.J., McNicol D.K., 1994, Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. Hydrobiologia, 280: 345-351
  • 26.McCollum E.W., Crowder L.B., McCollum S.A., 1998, Complex interactions of fish, snails and littoral zone periphyton. Ecology, 79: 1980-1994
  • 27.Marshall J.C., Sheldon F., Thorns M., Choy S., 2006, The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. Aust. J. Mar. Fresh. Res., 57: 61-74
  • 28.Mundy C.J., Hann B.J., 1997, Snail-periphyton interactions in a prairie wetland. University Field Station (Delta Marsh). Annual Report, 31: 40-52
  • 29.Obolewski K., 2011, Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol. Eng., 37: 796-805
  • 30.Obolewski K., Glińska-Lewczuk K., Kobus S., 2009, The effect of flow on the macrozoobenthos structure in a re-opened oxbow lake - a case study of the Słupia river, northern Poland. [in:] Ecohydrology of Surface and Groundwater Dependent Systems: Concepts, Methods and Recent Developments. Eds. Thoms M., Heal K., Bøgh E., Chambel A. and Smakhtin V., IAHS Publ., 328: 13-23
  • 31.Piesik Z., Obolewski K., 2004, Fouling fauna (zooperiphyton) inhabiting reed Phragmites australis (CAV.) Trin. ex STEUD. in lake Wicko Przymorskie. Baltic Coastal Zone, 8: 81-94
  • 32.Peres-Neto P.R., Legendre P., Dray S., Borcard D., 2006, Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology, 87: 2614-2625
  • 33.Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., et al. 1997, The natural flow regime. Bioscience, 47, 769-784
  • 34.Poff N.L., Ward J.V., 1989, Implications of stream flow variability and predictability for lotic community structure -a regional-analysis of stream flow patterns. Can. J. Fish. Aquat. Sci. 46: 1805-1818
  • 35.R Development Core Team, 2007, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  • 36.Rasmussen, J.B., 1988, Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and trophic factors. Can. J. Fish. Aquat. Sci. 45: 1436-1447
  • 37.Sandin L. 2003, Benthic macroinvertebrates in Swedish streams: community structure, taxon richness, and environmental relations. Ecography, 26: 269-282
  • 38.Sheldon F., Boulton A.J., Puckridge J.T., 2002, Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biol. Conserv., 103: 13-31
  • 39.Taniguchi H., Nakano S., Tokeshi M., 2003, Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwat. Biol., 48: 718-728
  • 40.Ter Braak C.J.F., Šmilauer P., 2002, CANOCO Reference manual and CanoDraw for Windows User's guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York
  • 41.Tockner K., Pennetzdorfer D., Reiner N., Schiemer F., Ward J.V., 1999a, Hydrological connectivity and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria). Freshwat. Biol., 41: 521-535
  • 42.Tockner K., Schiemer F., Baumgartner C., Kum G., Weigand E., et al. 1999b, The Danube restoration project: Species diversity along habitat gradients in the floodplain system. Regulated Rivers 15: 245-258
  • 43.Tockner K., Malard F., Ward J.V., 2000, An extension of the flood pulse concept. Hydrological Processes 14: 2861-2883
  • 44.Van der Brink F.W.B, Van der Velde G., Buijse A.D., Klink A.G., 1996, Biodiversity of the Lower Rhine and Meuse river-floodplains: its significance for ecological management. Neth. J. Aquatic. Ecol., 30: 129-149
  • 45.Ward J.V., 1998, Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Conserv., 83: 269-278
  • 46.Ward J.V., Tockner K., Arscott D.B., Claret C., 2002, Riverine landscape diversity. Freshwat. Biol., 47: 517-539
  • 47.Wissmar R.C., 1991, Forest detritus and cycling of nitrogen in a mountain lake. Can. J. Forest. Research, 21: 990-998
  • 48.Woodcock T.S., Huryn A.D., 2007, The response of macroinvertebrate production to a pollution gradient in a headwater stream. Freshwat. Biol., 52: 177-196
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.