PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of POC dynamics in the southern Baltic under possible future conditions determined by nutrients, light and temperature

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses predictions of particulate organic carbon (POC) concentrations in the southern Baltic Sea. The study is based on the one-dimensional Particulate Organic Carbon Model (1D POC), described in detail by Dzierzbicka-Głowacka et al. (2010a). The POC concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus) concentrations. Temporal changes in the phytoplankton biomass are caused by primary production, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, faecal production, mortality and carnivorous grazing. The changes in the pelagic detritus concentration are determined by the input of dead phytoplankton and zooplankton, the natural mortality of predators, faecal pellets, and sinks - sedimentation, zooplankton grazing and biochemical decomposition. The model simulations were done for selected locations in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland Deep) under predicted conditions characterized by changes of temperature, nutrient concentrations and light availability. The results cover the daily, monthly, seasonal and annual POC concentration patterns in the upper water layer. If the assumed trends in light, nutrients and temperature in the southern Baltic correctly predict the conditions in 2050, our calculations indicate that we can expect a two- to three-fold increase in POC concentration in late spring and a shift towards postponed maximum POC concentration. It can also be anticipated that, as a result of the increase in POC, oxygenation of the water layer beneath the halocline will decrease, while the supply of food to organisms at higher trophic levels will increase.
Słowa kluczowe
Czasopismo
Rocznik
Strony
971--992
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
autor
  • Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland, dzierzb@iopan.gda.pl
Bibliografia
  • 1.BACC Author Team, 2008, Assessment of climate change for the Baltic Sea basin, Springer-Verlag, Berlin, 473 pp.
  • 2.Caldeira K., Wicket M.E., 2003, Anthropogenic carbon and ocean pH, Nature, 425 (6956), 365-371. http://dx.doi.org/10.1038/425365a
  • 3.ChenW., Wagnersky P. J., 1993, High-temperature combustion analysis of dissolved organic carbon produced in phytoplankton cultures, Mar. Chem., 41 (1-3), 167-171. http://dx.doi.org/10.1016/0304-4203(93)90115-5
  • 4.Chisholm S.W., 2000, Stirring times in the Southern Ocean, Nature, 407 (6805), 685-686. http://dx.doi.org/10.1038/35037696
  • 5.Czyszek W., Wensierski W., Dera J., 1979, Solar radiation energy inflow and absorption in the Baltic water, SiMO, 26, 105-140, (in Polish).
  • 6.Doos K., Meier H.E.M., Doscher R., 2004, The Baltic haline conveyor belt or the overturningcir culation and mixing in the Baltic, Ambio, 33 (4-5), 258-262.
  • 7.Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
  • 8.Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
  • 9.Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3, 635-650.
  • 10.Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010a, Particulate Organic Carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621-648. http://dx.doi.org/10.5697/oc.52-4.621
  • 11.Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010b, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7, 2247-2259. http://dx.doi.org/10.5194/bg-7-2247-2010
  • 12.GrzybowskiW., Pempkowiak J., 2003, Preliminary results on low molecular weight organic substances dissolved in the waters of the Gulf of Gdańsk, Oceanologia, 45 (4), 693-704.
  • 13.Hagström Å., Azam F., Kuparinen J., Zweifel U.-L., 2001, Pelagic plankton growth and resource limitations in the Baltic Sea, [in:] A systems analysis of the Baltic Sea, F.V. Wulff, L.A. Rahm & P. Larsson, Springer-Verlag, Berlin, 177-210.
  • 14.HELCOM, 1996, The third periodic assessment of the state of the marine environment of the Baltic Sea, Baltic Sea Environ. Proc. No. 64B, Helsinki Commission, Helsinki, 252 pp.
  • 15.Hygum B.H., Petersen J.W., Søndergaard M., 1997, Dissolved organic carbon released by zooplankton grazing activity - a high quality substrate pool for bacteria, J. Plankton Res., 19 (1), 97-111. http://dx.doi.org/10.1093/plankt/19.1.97
  • 16.Kuliński K., Dzierzbicka-Glowacka L., Maciejewska A., Pempkowiak J., 2011, Parameterisation of a zero-dimensional Pelagic Detritus Model, Gdańsk Deep, Baltic Sea, Ochr. Środ., 13, 187-206.
  • 17.Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: Quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78 (1), 38-44. http://dx.doi.org/10.1016/j.ecss.2007.11.017
  • 18.Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim. Dyn., 27 (1), 39-68. http://dx.doi.org/10.1007/s00382-006-0124-x
  • 19.Meier H. E.M., Kjellstr¨om E., Graham L.P., 2006, Estimating uncertainties of projected Baltic Sea salinity in the late 21st century, Geophys. Res. Lett., 33, L15, 705. http://dx.doi.org/10.1029/2006GL026488
  • 20.Nagata T., 2000, Production mechanisms of dissolved organic matter, [in:] Microbial ecology of the oceans, D. L. Kirchman (ed.), Wiley-Liss, Inc., New York, 121-152.
  • 21.Omstedt A., Gustafsson E., Wesslander K., 2009, Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Cont. Shelf Res., 29 (7), 870-885.
  • 22.Pempkowiak J., 1985, The input of biochemically labile and resistant organic matter to the Baltic Sea from the Vistula River, SCOPE/UNEP, 58, 345-350.
  • 23.Pempkowiak J., Kupryszewski G., 1980, The input of organic matter to the Baltic from the Vistula River, Oceanologia, 12, 79-98.
  • 24.Pempkowiak J., Walkusz-Miotk J., Bełdowski J., Walkusz W., 2006, Heavy metals in zooplankton from the Southern Baltic, Chemosphere, 62 (10), 1697-1708. http://dx.doi.org/10.1016/j.chemosphere.2005.06.056
  • 25.Pempkowiak J., Widrowski M., Kuliński W., 1984, Dissolved organic carbon and particulate carbon in the Southern Baltic in September, Proc. XIV Conf. Baltic Oceanograph., IMGW. Gdynia, 699-713.
  • 26.Petterson C.A., Allard B., Boren H., 1997, River discharge of humic substances and humic-bound metals to the Gulf of Bothnia, Estuar. Coast. Shelf Sci., 44 (5), 533-541. http://dx.doi.org/10.1006/ecss.1996.0159
  • 27.Pocklington R., Pempkowiak J., 1984, Contribution of humic substances by the Vistula River to the Baltic Sea, [in:] Transport of carbon and minerals in major world rivers, E.T. Degens, S. Kempe & H. Soliman (eds.), SCOPE/UNEP, 55 (2), Hamburg, 365-370.
  • 28.Pohl C., Hennings U., Peterson I., Siegel H., Trace metal budget, transport, modification and sink in the transition area between the Oder and Peene rivers and the Southern Pomeranian Bight, Mar. Pollut. Bull., 36 (8), 598-616.
  • 29.Raymont J., 1976, Plankton and productivity in the oceans, Pergamon, Oxford, 660 pp.
  • 30.Renk H., 2000, Primary production in the southern Baltic, Stud. Mater. Sea Fish. Inst., Gdynia, 35 (A), 78 pp.
  • 31.Renk H., Ochocki S., 1998, Photosynthetic rate and light curves of phytoplankton in the southern Baltic, Oceanologia, 40 (4), 331-344.
  • 32.Thomas H., Bozec Y., de Baar H. J.W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., Kattner G., Borges A.V., 2005, The carbon budget of the North Sea, Biogeosciences, 2 (1), 87-96. http://dx.doi.org/10.5194/bg-2-87-2005
  • 33.Thomas H., Pempkowiak J., Wulff F., Nagel K., 2003, Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: A paradox or a buffer for eutrophication?, Geophys. Res. Lett., 30 (21), 2130. http://dx.doi.org/10.1029/2003GL017937
  • 34.Tortell P.D., Martin C.L., Corkum M.E., 2006, Inorganic carbon uptake and intracellular assimilation by subarctic Pacific phytoplankton assemblages, Limnol. Oceanogr., 51 (5), 2102-2110. http://dx.doi.org/10.4319/lo.2006.51.5.2102
  • 35.Turnewitsch R., Springer B.M., Kiriakoulakis K., Vilas J.C., Aristegui J.,Wolff G., Peine F., Werk S., Graf G., Waniek J. J., 2007, Determination of particulate organic carbon (POC) in seawater: the relative methodological importance of artificial gains and losses in two glass-fiber-based techniques, Mar. Chem., 105 (3-4), 208-228. http://dx.doi.org/10.1016/j.marchem.2007.01.017
  • 36.Voipio A., 1981, The Baltic Sea, Elsevier Sci. Publ., Amsterdam, 123-143.
  • 37.Voss M., Emeis K.-C., Hille S., Neumann T., Dippner J.W., 2005, The nitrogen cycle of the Baltic Sea from an isotopic perspective, Global Biogeochem. Cyc., 19, GB3001. http://dx.doi.org/10.1029/2004GB002338
  • 38.Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the western Gdańsk basin, Stud. Mater. Sea Fish. Inst., Gdynia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.