PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Remote sensing reflectance of Pomeranian lakes and the Baltic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The remote sensing reflectance R_rs, concentrations of chlorophyll a and other pigments C_i, suspended particulate matter concentrations C_SPM and coloured dissolved organic matter absorption coefficient αCDOM(λ) were measured in the euphotic zones of 15 Pomeranian lakes in 2007-2010. On the basis of 235 sets of data points obtained from simultaneous estimates of these quantities, we classified the lake waters into three types. The first one, with the lowest αCDOM(440 nm) (usually between 0.1 and 1.3 m-1 and chlorophyll α concentrations 1.3 < Ca < 33 mg m-3), displays a broad peak on the reflectance spectrum at 560-580 nm and resembles the shape of the remote sensing reflectance spectra usually observed in the Baltic Proper. A set of Rrs spectra from the Baltic Proper is given for comparison. The second lake water type has a very high CDOM absorption coefficient (usually αCDOM(440 nm) > 10 m-1, up to 17.4 m-1 in Lake Pyszne; it has a relatively low reflectance (Rrs < 0.001 sr-1) over the entire spectral range, and two visible reflectance spectra peaks at ca 650 and 690-710 nm. The third type of lake water represents waters with a lower CDOM absorption coefficient (usually αCDOM(440 nm) < 5 m-1) and a high chlorophyll a concentration (usually Ca > 4 mg m-3, up to 336 mg m-3 in Lake Gardno). The remote sensing reflectance spectra in these waters always exhibit three peaks (Rrs > 0.005 sr-1): a broad one at 560-580 nm, a smaller one at ca 650 nm and a well-pronounced one at 690-720 nm. These Rrs(λ) peaks correspond to the relatively low absorption of light by the various optically active components of the lake water and the considerable scattering (over the entire spectral range investigated) due to the high SPM concentrations there. The remote sensing maximum at λ 690-720 nm is higher still as a result of the natural fluorescence of chlorophyll a. Empirical relationships between the spectral reflectance band ratios at selected wavelengths and the various optically active components for these lake waters are also established: for example, the chlorophyll a concentration in surface water layer Ca = 6.432 e4.556X, where X = [max Rrs (695 ≤λ≤720) - Rrs(? = 670)] / max Rrs (695 ? ? ? 720), and the coefficient of determination R^2 = 0.95.
Czasopismo
Rocznik
Strony
959--970
Opis fizyczny
Bibliogr. 11 poz., rys., wykr.
Twórcy
autor
autor
autor
  • Institute of Physics, Pomeranian University in Słupsk, Arciszewskiego 22B, Słupsk 76-200, Poland, ficek@apsl.edu.pl
Bibliografia
  • 1.Choiński A., Limnologia fizyczna Polski (Physical limnology of Poland), 2007,Wyd. Nauk. UAM, 547 pp.
  • 2.Darecki M., Ficek D., Krężel A., Ostrowska M., Majchrowski R., Woźniak S.B., Bradtke K., Dera J., Woźniak B., 2008, Algorithms for the remote sensing of the Baltic ecosystem (DESAMBEM). Part 2: Empirical validation, Oceanologia, 50 (4), 509-538.
  • 3.Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., 26 (2), 247-260. http://dx.doi.org/10.1080/01431160410001720298
  • 4.Darecki M., Weeks A., Sagan S., Kowalczuk P., Kaczmarek S., 2003, Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms, Cont. Shelf Res., 23 (3-4), 237-250. http://dx.doi.org/10.1080/01431160410001720298
  • 5.Gitelson A.A., Schalles J. F., Hladik C.M., 2007, Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study, Remote Sens. Environ., 109, 464-472. http://dx.doi.org/10.1016/j.rse.2007.01.016
  • 6.Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K. S., Clark D.K., 1988, A semi-analytical radiance model of ocean color, J. Geophys. Res., 93 (D9), 10909-10924. http://dx.doi.org/10.1029/JD093iD09p10909
  • 7.Gordon H.R., Morel A., 1983, Remote assessment of ocean color for interpretation of satellite visible imagery, [in:] Lecture notes on coastal and estuarine studies, M. Bowman (ed.), Springer-Verlag, New York, 114 pp.
  • 8.Kowalczuk P., Darecki M., Zabłocka M., Górecka I., 2010, Validation of empirical and semi-analytical remote sensing algorithms for estimating absorption by Coloured Dissolved Organic Matter in the Baltic Sea from SeaWiFS and MODIS imagery, Oceanologia, 52 (2), 171-196. http://dx.doi.org/10.5697/oc.52-2.171
  • 9.Mitchell B.G., Kiefer D.A., 1988, Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean, Deep-Sea Res., 35 (5), 665-689. http://dx.doi.org/10.1016/0198-0149(88)90025-8
  • 10.Mueller J.L., Austin R.W., 1995, Ocean optics protocols for SeaWiFS validation, Revision 1, S.B. Hooker, E.R. Firestone & J.G. Acker (eds.), NASA Tech. Memo. 104566, Vol. 25, NASA, Greenbelt, MD.
  • 11.Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 454 pp.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.