PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An approximation theorem in Musielak-Orlicz-Sobolev spaces

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we prove the uniform boundedness of the operators of convolution in the Musielak-Orlicz spaces and the density of C[...]in the Musielak-Orlicz-Sobolev spaces by assuming a condition of Log-Hölder type of continuity.
Rocznik
Strony
109--120
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
Bibliografia
  • [1] L. Aharouch, E. Azroul and M. Rhoudaf, Nonlinear Unilateral Problems in Orlicz spaces, Appl. Math., 200 (2006), 1-25.
  • [2] L. Aharouch, A. Benkirane and M. Rhoudaf, Existence results for some unilateral problems without sign condition with obstacle free in Orlicz spaces, Nonlinear Anal. 68 (2008), no. 8, 2362-2380.
  • [3] A. Benkirane, Approximations de type Hedberg dans les espaces WmLlog L(Ώ) et applications.(French) [Hedberg-type approximations in the spaces WmLlog L(Ώ) and applications], Ann. Fac. Sci. Toulouse Math. (5) 11 (1990), no. 2, 67-78.
  • [4] A. Benkirane, A. Elmahi, An existence for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Analysis, 36 (1999) 11-24.
  • [5] A. Benkirane, A. Emahi, A strongly nonlinear elliptic equation having natural growth terms and L1 data, Nonlinear Anal. 39 (2000), no. 4, Ser. A: Theory Methods, 403-411.
  • [6] A. Benkirane, A. Emahi, D. Meskine, On the limit of some nonlinear elliptic problems, Arch. Inequal. Appl. 1 (2003), no. 2, 207-219.
  • [7] A. Benkirane, J.P. Gossez, An approximation theorem in higher order Orlicz-Sobolev spaces and applications.Studia Math. 92 (1989), no. 3, 231-255.
  • [8] A. Benkirane, M. Kbiri Alaoui, Sur certaines quations elliptiques non linarires a' second membre mesure. (French) [Certain nonlinear elliptic equations with right-hand-side measures], Forum Math. 12 (2000), no. 4, 385-395.
  • [9] A. Benkirane, M. Mohamedhen Val, Some existance results for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, In preparation.
  • [10] A. Elmahi, D. Meskine, Existence of solutions for elliptic equations having natural growth terms in orlicz spaces, Abstr. Appl. Anal. 12 (2004) 1031-1045.
  • [11] A. Elmahi, D. Meskine, Non-linear elliptic problems having natural growth and L1 data in Orlicz spaces, Annali di Matematica (2004) 107-114.
  • [12] A. Elmahi, D. Meskine, Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Analysis 60 (2005) 1-35.
  • [13] J.P. Gossez, Nonlinear elliptic boundary value prolems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Malh. Soc. 190 (1974), 163-205.
  • [14] J.P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74 (1982), 17-24.
  • [15] J.P. Gossez, V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, Nonlinear Anal. 11 (1987), 379-392.
  • [16] H. Hudzik, Density of C10 (Rn) in generalized Orlicz-Sobolev space WkM (Rn), Funct. Approximatio Comment. Math. 7 (1979), 15-21.
  • [17] H. Hudzik, On generalized Orlicz-Sobolev space, Funct. Approximatio Comment. Math. 4 (1976), 37-51.
  • [18] H. Hudzik, On problem of density of C10 () in generalized Orlicz-Sobolev space WkM (Ώ) for every open set Ώ Rn, Comment. Math. Parce Mat. 20 (1977), 65-78.
  • [19] J. Musielak, Modular spaces and Orlicz spaces, Lecture Notes in Math. 1034 (1983).
  • [20] M.M. Rao and Z.D. Ren, Theory of Orlicz spaces, Marcel Deker, New york, 1991.
  • [21] S. G. SAMKO, Denseness of C∞ (Rn) in the generalized Sobolev spaces W1,p(x)(Rn), Intern. Soc. for Analysis, Applic. and Comput. 5 (2000), 333-342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.