Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, using the concept of A-statistical convergence we prove a Korovkin type approximation theorem in multivariate modular function spaces. Furthermore, giving an example via bivariate operators of Kantorovich type, it is shown that our theorem is stronger than its classical case.
Wydawca
Czasopismo
Rocznik
Tom
Strony
39--53
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
- Cumhuriyet University, Faculty of Science, Department of Mathematics 58140, Sivas, Turkey, cbelen@cumhuriyet.edu.tr
Bibliografia
- [1] F. Altomare and M. Campiti, Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin, New York, 1994.
- [2] C. Bardaro and I. Mantellini, Approximation properties in abstract modular spaces for a class of general sampling type operators, Applicable Analysis 85(4), (2006), 383-413.
- [3] C. Bardaro and I. Mantellini, Korovkin theorem in modular spaces, Commentationes Math. 47(2) (2007), 239-253.
- [4] C. Bardaro and I. Mantellini, A Korovkin theorem in multivariate modular function spaces, Journal of function spaces and applications 7(2) (2009), 105-120.
- [5] C. Bardaro, J. Musielak and G. Vinti, Nonlinear integral operators and applications, De Gruyter Series in Nonlinear Analysis and Appl..Vol.9, 2003.
- [6] H. Berens and G.G. Lorentz, Theorems of Korovkin type for positive linear operators on Banach lattices, in: Approximation Theory (Proc. Internat. Sympos. Univ. Texas, Austin,Tex., (1973), 1-30; Academic Press, New York, 1973..
- [7] J. Boos, Classical and Modern Methods in Summability, Oxford University Press, UK, 2000.
- [8] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), 194-198.
- [9] J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl. 197 (1996), 392-399.
- [10] K. Demirci, A-statistical core of a sequence. Demonstratio Math 33, (2000), 343-353.
- [11] R.A. DeVore and G.G Lorentz, Constructive Approximation, Grund. Math. Wiss. 303, Springer Verlag, 1993.
- [12] K. Donner, Korovkin theorems in Lp-spaces, J. Funct. Anal. 42(1), (1981), 12-28.
- [13] O. Duman and C. Orhan, An abstract version of the Korovkin approximation theorem, Publ. Math. Debrecen 69 (2006) 33-46.
- [14] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
- [15] J.A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- [16] J.A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
- [17] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math. 95 (1981), 293-305.
- [18] S. Karaku¸s, K. Demirci and O. Duman, Statistical Approximation by Positive Linear Operators on Modular Spaces. Positivity 14 (2010), 321-334.
- [19] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1993), 77-83.
- [20] P.P. Korovkin, Linear operators and approximation theory, Hindustan, Delhi, 1960.
- [21] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Lecture Notes in Math., 1034 (1983).
- [22] J. Musielak, Nonlinear approximation in some modular function spaces I, Math. Japon. 38 (1993), 83-90.
- [23] O.T. Pop and M.D. Farca¸s, About the bivariate operators of Kantorovich type, Acta Math. Univ. Comenianae, 78(1) (2009), 43-52.
- [24] P. Renaud, A Korovkin theorem for abstract Lebesgue spaces, J. Approx. Theory, 102 (2000), 13-20.
- [25] E. Schäfer, Korovkin's theorems: a unifying version, Functiones et Approximatio 18 (1989), 43-49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0012-0012