Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The integral equation of Urysohn type is considered, for the deterministic and stochastic cases . We show, using the fixed point theorem of Darbo type that under some assumptions the equations have solutions belonging to the space of continuous functions. The main tool used in our paper is the technique associated with measures of noncompactness.
Wydawca
Czasopismo
Rocznik
Tom
Strony
49--60
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Department of Mathematics, Rzeszów University of Technology W. Pola 2, 35-959 Rzeszów, Poland, mpol@prz.edu.pl
Bibliografia
- [1] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equation, J. Austral. Math. Soc, 46 (1989), 61-68.
- [2] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York and Basel, 1980.
- [3] J. Banaś and M. Pasławska-Południak, Monotonic solutions of Urysohn integral equation on unbounded interval, Int. J. Comput. Math. Appl., 47 (2004), 1947-1954.
- [4] J. Banaś, D. Szynal and S. Wedrychowicz, On existence, asymptotic behavior and stability of solutions of stochastic integral equations, Stoch. Annal. Appl., 9, (4) (1991), 363-385.
- [5] R. Liptser and A. Shiryayev, Statistics of Random Processes, Springer, Berlin, 1977.
- [6] D. Szynal and S. Wedrychowicz, On existence and asymptotic behavior of solutions of a nonlinear stochastic integral equation, Ann. Mat. Pura Appl., 142, (4) (1985), 105-119.
- [7] D. Szynal and S. Wedrychowicz, On existence and asymptotic behavior of random solutions of a class of stochastic functional - integral equations, Coll. Mat, 51 (1987), 349-364.
- [8] D. Szynal and S. Wedrychowicz, On solutions of a stochastic integral equations of the Volterra - Fredholm type, Ann. Univ. Mariae Curie - Skłodowska, Sectio A, 53, (2) (1989), 107-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0011-0078